The topological coefficient quantifies the extent to which a node shares its neighbors with other nodes in the network [2]. For a given node \(i\), the topological coefficient is defined as
\begin{equation*}
c_{\mathrm{top}}(i) = \frac{\sum_{j=1}^N |\mathcal{N}(i) \cap \mathcal{N}(j)|}{|\mathcal{N}(i)| \cdot |\{v: \mathcal{N}(i) \cap \mathcal{N}(v) \neq \emptyset\}|},
\end{equation*}
where \(\mathcal{N}(i)\) is the set of neighbors of \(i\).
The topological coefficient ranges from 0 to 1. A value of \(c_{\mathrm{top}}(i) = 0\) indicates that node \(i\) does not share any neighbors with other nodes,
while higher values indicate that a larger fraction of \(i\)'s neighbors are shared with other nodes. The coefficient equals 1 if and only if every neighbor of \(i\) is shared with every node that shares at least one neighbor with \(i\). Intuitively, nodes with a high topological coefficient are embedded in tightly interconnected neighborhoods, whereas nodes with low values are more topologically isolated.

References

[1] Shvydun, S. (2025). Zoo of Centralities: Encyclopedia of Node Metrics in Complex Networks. arXiv: 2511.05122 https://doi.org/10.48550/arXiv.2511.05122
[2] Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke M., Zenkner M., Schoenherr A., Koeppen S., Timm J., Mintzlaff S., Abraham C., Bock N., Kietzmann S., Goedde A., Toksöz E., Droege A., Krobitsch S., Korn B., Birchmeier W., Lehrach H. & Wanker, E. E. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell, 122(6), 957-968. doi: 10.1016/j.cell.2005.08.029.