Zeta vector centrality
Zeta vector centrality
, also referred to as node displacement [2] or topological centrality [3], identifies the most effective “spreader” node in a network [4]. Inspired by electrical flows in a resistor network, Van Mieghem et al. define the best conducting node \(i\) in a graph \(G\) as the node that minimizes the diagonal element \(Q^{\dagger}_{ii}\) of the pseudoinverse \(Q^{\dagger}\) of the weighted Laplacian matrix of \(G\):
\begin{equation*}
c_{\rm Zeta}(i) = Q^{\dagger}_{ii} = \frac{1}{N} \sum_{j=1}^{N} ω_{ji} - \frac{\tilde{R}_G}{N^2},
\end{equation*}
where \(ω_{ji}\) is the effective resistance between nodes \(j\) and \(i\), and \(\tilde{R}_G\) is the effective graph resistance. In other words, \(c_{\rm Zeta}(i)\) represents the average effective resistance from node \(i\) to all other nodes, minus the mean effective resistance of the graph.
The node with minimal \(c_{\rm Zeta}(i)\) is the best electrical spreader, having the lowest energy or potential and the strongest connectivity to the rest of the network. Alternative interpretations of \(Q^{\dagger}_{ii}\) include detour overheads in random walks or the average connectedness of nodes when the network splits, highlighting the node’s role in global communication [3]. The ranking of nodes based on \(Q^{\dagger}_{ii}\) is equivalent to node displacement [2], computed as
\begin{equation*}
\Delta x_i = \sqrt{\frac{Q^{\dagger}_{ii}}{β k}},
\end{equation*}
where \(k\) is a common spring constant and \(β\) is the inverse temperature, linking network topology to physical interpretations of displacement.
\renewcommand{\bibname}{References}
\begin{thebibliography}{99}
\addcontentsline{toc}{endsection}{\large References}
\footnotesize
\setlength{\itemsep}{-0.4em}
\vspace{-0.8cm}
\bibitem{Achard2007} Achard, S., \& Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS computational biology, 3(2), e17.
doi: 10.1371/journal.pcbi.0030017.
\bibitem{Adali2012} Adali, S., Lu, X., \& Magdon-Ismail, M. (2012). Attentive betweenness centrality (abc): considering options and bandwidth when measuring criticality. In 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing (pp. 358-367). IEEE.
doi: 10.1109/SocialCom-PASSAT.2012.53.
\bibitem{Adams1983} Adams, S. M., Kimmel, B. L., \& Ploskey, G. R. (1983). Sources of organic matter for reservoir fish production: a trophic-dynamics analysis. Canadian Journal of Fisheries and Aquatic Sciences, 40(9), 1480-1495.
doi: 10.1139/f83-170.
\bibitem{Agneessens2017} Agneessens, F., Borgatti, S. P., \& Everett, M. G. (2017). Geodesic based centrality: Unifying the local and the global. Social Networks, 49, 12-26.
doi: 10.1016/j.socnet.2016.09.005.
\bibitem{Agryzkov2014} Agryzkov, T., Oliver, J. L., Tortosa, L., \& Vicent, J. (2014). A new betweenness centrality measure based on an algorithm for ranking the nodes of a network. Applied Mathematics and Computation, 244, 467-478.
doi: 10.1016/j.amc.2014.07.026.
\bibitem{Agryzkov2019} Agryzkov, T., Tortosa, L., \& Vicent, J. F. (2019). A variant of the current flow betweenness centrality and its application in urban networks. Applied Mathematics and Computation, 347, 600-615.
doi: 10.1016/j.amc.2018.11.032.
\bibitem{Ahajjam2018} Ahajjam, S., \& Badir, H. (2018). Identification of influential spreaders in complex networks using HybridRank algorithm. Scientific reports, 8(1), 11932.
doi: 10.1038/s41598-018-30310-2.
\bibitem{Ahn2010} Ahn, Y. Y., Bagrow, J. P., \& Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761-764.
doi: 10.1038/nature09182.
\bibitem{Ai2017} Ai, X. (2017). Node importance ranking of complex networks with entropy variation. Entropy, 19(7), 303.
doi: 10.3390/e19070303.
\bibitem{Aleskerov2014} Aleskerov, F., Andrievskaya, I. and Permjakova, E. (2014), Key Borrowers Detected by the Intensities of Their Short-Range Interactions (2014). Higher School of Economics Research Paper No. WP BRP 33/FE/2014.
doi: 10.2139/ssrn.2479272.
\bibitem{Aleskerov2024a}Aleskerov, F., Cinar, Y., Deseatnicov, I., Sergeeva, E., Tkachev, D., \& Yakuba, V. (2024). Network analysis of economic sectors in the world economy. Procedia Computer Science, 242, 420-427.
doi: 10.1016/j.procs.2024.08.165.
\bibitem{Aleskerov2022} Aleskerov, F., Dutta, S., Egorov, D., \& Tkachev, D. (2022). Networks under deep uncertainty. Procedia Computer Science, 214, 1285-1292.
doi: 10.1016/j.procs.2022.11.307.
\bibitem{Aleskerov2017}Aleskerov, F., Meshcheryakova, N. and Shvydun, S. (2017). Power in Network Structures. In: Springer Proceedings in Mathematics \& Statistics, vol 197. Springer, Cham.
doi: 10.1007/978-3-319-56829-4\_7.
\bibitem{Aleskerov2020} Aleskerov, F., Andrievskaya, I., Nikitina A. and Shvydun, S. (2020). Key Borrowers Detected by the Intensities of Their Interactions. Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning (In 4 Volumes), 355-389 World Scientific: Singapore Volume 1, Chapter 9.
doi: 10.1142/9789811202391\_0009.
\bibitem{Aleskerov2024b} Aleskerov, F., Khutorskaya, O., Yakuba, V., Stepochkina, A., \& Zinovyeva, K. (2024). Affiliations based bibliometric analysis of publications on parkinson’s disease. Computational Management Science, 21(1), 13.
doi: 10.1007/s10287-023-00495-7.
\bibitem{Aleskerov2020b}Aleskerov, F., Meshcheryakova, N., \& Shvydun, S. (2020). Indirect influence assessment in the context of retail food network. In Network Algorithms, Data Mining, and Applications: NET, Moscow, Russia, May 2018 8 (pp. 143-160). Springer International Publishing.
doi: 10.1007/978-3-030-37157-9\_10.
\bibitem{Aleskerov2023} Aleskerov, F., Seregin, M., \& Tkachev, D. (2023). The network analysis of oil trade under deep uncertainty. Procedia Computer Science, 221, 1021-1028.
doi: 10.1016/j.procs.2023.08.083.
\bibitem{AleskerovBook} Aleskerov, F., Shvydun, S. and Meshcheryakova, N. (2021). New centrality measures in networks: how to take into account the parameters of the nodes and group influence of nodes to nodes (1st ed.). Chapman and Hall/CRC.
doi: 10.1201/9781003203421.
\bibitem{YAleskerov2020} Aleskerov, F., \& Yakuba, V. (2020). Matrix-vector approach to construct generalized centrality indices in networks. Available at SSRN 3597948.
doi: 10.2139/ssrn.3597948.
\bibitem{Alvarez-Socorro2015} Alvarez-Socorro, A. J., Herrera-Almarza, G. C., \& González-Díaz, L. A. (2015). Eigencentrality based on dissimilarity measures reveals central nodes in complex networks. Scientific reports, 5(1), 17095.
doi: 10.1038/srep17095.
\bibitem{Andrade2019} de Andrade, R. L., \& Rêgo, L. C. (2019). p-Means centrality. Communications in Nonlinear Science and Numerical Simulation, 68, 41-55.
doi: 10.1016/j.cnsns.2018.08.002.
\bibitem{Anthonisse1971} Anthonisse, J. M., (1971) The rush in a directed graph, Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam.
\bibitem{Arrow2010} Arrow, K. J., Sen, A., \& Suzumura, K. (Eds.). (2010). Handbook of social choice and welfare (Vol. 2). Elsevier.
\bibitem{Artime2024} Artime, O., Grassia, M., De Domenico, M., Gleeson, J. P., Makse, H. A., Mangioni, G., Perc, M. \& Radicchi, F. (2024). Robustness and resilience of complex networks. Nature Reviews Physics, 6(2), 114-131.
doi: 10.1038/s42254-023-00676-y.
\bibitem{Babul2022} Babul, S. A., Devriendt, K., \& Lambiotte, R. (2022). Gromov centrality: A multiscale measure of network centrality using triangle inequality excess. Physical Review E, 106(3), 034312.
doi: 10.1103/PhysRevE.106.034312.
\bibitem{Bae2014} Bae, J., \& Kim, S. (2014). Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Physica A: Statistical Mechanics and its Applications, 395, 549-559.
doi: 10.1016/j.physa.2013.10.047.
\bibitem{Bandyopadhyay2018} Bandyopadhyay, S., Narayanam, R., \& Murty, M. N. (2018). A generic axiomatic characterization for measuring influence in social networks. In 2018 24th international conference on pattern recognition (icpr) (pp. 2606-2611). IEEE.
doi: 10.1109/ICPR.2018.8546109.
\bibitem{Banerjee2013} Banerjee, A., Chandrasekhar, A. G., Duflo, E., \& Jackson, M. O. (2013). The diffusion of microfinance. Science, 341(6144), 1236498.
doi: 10.1126/science.1236498.
\bibitem{Banerjee2020} Banerjee, S., Jenamani, M., \& Pratihar, D. K. (2020). A survey on influence maximization in a social network. Knowledge and Information Systems, 62(9), 3417-3455.
doi: 10.1007/s10115-020-01461-4.
\bibitem{Bao2017} Bao, Z. K., Ma, C., Xiang, B. B., \& Zhang, H. F. (2017). Identification of influential nodes in complex networks: Method from spreading probability viewpoint. Physica A: Statistical Mechanics and its Applications, 468, 391-397.
doi: 10.1016/j.physa.2016.10.086.
\bibitem{Barrat2004} Barrat, A., Barthelemy, M., Pastor-Satorras, R., \& Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the national academy of sciences, 101(11), 3747-3752.
doi: 10.1073/pnas.0400087101.
\bibitem{Katsaros2013} Basaras, P., Katsaros, D., \& Tassiulas, L. (2013). Detecting influential spreaders in complex, dynamic networks. Computer, 46(04), 24-29.
doi: 10.1109/MC.2013.75.
\bibitem{Batagelj2002} Batagelj V., Zaveršnik M. (2002) Generalized Cores, arXiv:0202039.
doi: 10.48550/arXiv.cs/0202039.
\bibitem{Bauer2012} Bauer, F., \& Lizier, J. T. (2012). Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: A walk counting approach. Europhysics Letters, 99(6), 68007.
doi: 10.1209/0295-5075/99/68007.
\bibitem{Bavelas1948} Bavelas, A. (1948). A mathematical model for group structures. Human organization, 7(3), 16-30.
doi: 10.17730/humo.7.3.f4033344851gl053.
\bibitem{Bavelas1950} Bavelas, A. (1950). Communication patterns in task-oriented groups. Journal of the acoustical society of America.
doi: 10.1121/1.1906679.
\bibitem{Beauchamp1965} Beauchamp, M. A. (1965). An improved index of centrality. Behavioral science, 10(2), 161-163.
doi: 10.1002/bs.3830100205.
\bibitem{Benzi2013} Benzi, M., \& Klymko, C. (2013). Total communicability as a centrality measure. Journal of Complex Networks, 1(2), 124-149.
doi: 10.1093/comnet/cnt007.
\bibitem{Berahmand2018} Berahmand, K., Bouyer, A., \& Samadi, N. (2018). A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks. Chaos, Solitons \& Fractals, 110, 41-54.
doi: 10.1016/j.chaos.2018.03.014.
\bibitem{Berahmand2019} Berahmand, K., Bouyer, A., \& Samadi, N. (2019). A new local and multidimensional ranking measure to detect spreaders in social networks. Computing, 101, 1711-1733.
doi: 10.1007/s00607-018-0684-8.
\bibitem{Berge1958} Berge, C. (1958). Théorie des graphes et ses applications. Dunod, Paris, France.
doi: 10.1002/zamm.19600400516.
\bibitem{BianDeng2017} Bian, T., \& Deng, Y. (2017). A new evidential methodology of identifying influential nodes in complex networks. Chaos, Solitons \& Fractals, 103, 101-110.
doi: 10.1016/j.chaos.2017.05.040.
\bibitem{Bian2018} Bian, T., \& Deng, Y. (2018). Identifying influential nodes in complex networks: A node information dimension approach. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(4).
doi: 10.1063/1.5030894.
\bibitem{Bian2017} Bian, T., Hu, J., \& Deng, Y. (2017). Identifying influential nodes in complex networks based on AHP. Physica A: Statistical Mechanics and its Applications, 479, 422-436.
doi: 10.1016/j.physa.2017.02.085.
\bibitem{Bloch2023} Bloch, F., Jackson, M. O., \& Tebaldi, P. (2023). Centrality measures in networks. Social Choice and Welfare, 61(2), 413-453.
doi: 10.1007/s00355-023-01456-4.
\bibitem{Blöchl2011} Blöchl, F., Theis, F. J., Vega-Redondo, F., \& Fisher, E. O. N. (2011). Vertex centralities in input-output networks reveal the structure of modern economies. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(4), 046127.
doi: 10.1103/PhysRevE.83.046127.
\bibitem{Blöcker2022} Blöcker, C., Nieves, J. C., \& Rosvall, M. (2022). Map equation centrality: community-aware centrality based on the map equation. Applied Network Science, 7(1), 56.
doi: 10.1007/s41109-022-00477-9.
\bibitem{Boldi} Boldi, P., \& Vigna, S. (2014). Axioms for centrality. Internet Mathematics, 10(3-4), 222-262.
doi: 10.1080/15427951.2013.865686.
\bibitem{Bollobas1984} Bollobás, B. (1984). Graph Theory and Combinatorics: Proceedings of the Cambridge
Combinatorial Conference in Honor of P. Erdös Vol. 35 (Academic, 1984).
\bibitem{Bonacich1972} Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113-120.
doi: 10.1080/0022250X.1972.9989806.
\bibitem{Bonacich1972b} Bonacich, P. (1972). Technique for analyzing overlapping memberships. Sociological methodology, 4, 176-185.
doi: 10.2307/270732.
\bibitem{Bonacich1987} Bonacich, P. (1987). Power and centrality: A family of measures. American journal of sociology, 92(5), 1170-1182.
\bibitem{Bonacich2001} Bonacich, P., \& Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric relations. Social networks, 23(3), 191-201.
doi: 10.1016/S0378-8733(01)00038-7.
\bibitem{Bonato2020} Bonato, A., Eikmeier, N., Gleich, D. F., \& Malik, R. (2019, November). Centrality in dynamic competition networks. In International Conference on Complex Networks and Their Applications (pp. 105-116). Cham: Springer International Publishing.
doi: 10.1007/978-3-030-36683-4\_9.
\bibitem{Borgatti1997} Borgatti, S. P. (1997). Structural holes: Unpacking Burt’s redundancy measures. Connections, 20(1), 35-38.
\bibitem{Borgatti2002} Borgatti, S. P., Everett, M. G., \& Freeman, L. C. (2002). Ucinet for Windows: Software for social network analysis. Harvard, MA: analytic technologies, 6, 12-15.
\bibitem{Borgatti2003} Borgatti, S. P. (2003). The key player problem. Washington, D.C.: National Academy of Sciences Press. pp. 241-252.
doi: 10.2139/ssrn.1149843.
\bibitem{Borgatti2005} Borgatti, S. P. (2005). Centrality and network flow. Social networks, 27(1), 55-71.
doi: 10.1016/j.socnet.2004.11.008.
\bibitem{Borgatti2006} Borgatti, S. P., \& Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social networks, 28(4), 466-484.
doi: 10.1016/j.socnet.2005.11.005.
\bibitem{Borgatti2006b} Borgatti, S. P., Carley, K. M., \& Krackhardt, D. (2006). On the robustness of centrality measures under conditions of imperfect data. Social networks, 28(2), 124-136.
doi: 10.1016/j.socnet.2005.05.001.
\bibitem{Brandes2005} Brandes, U. (2005). Network analysis: methodological foundations (Vol. 3418). Springer Science \& Business Media.
doi: 10.1007/b106453.
\bibitem{Brandes2008} Brandes, U. (2008). On variants of shortest-path betweenness centrality and their generic computation. Social networks, 30(2), 136-145.
doi: 10.1016/j.socnet.2007.11.001.
\bibitem{Brandes2016} Brandes, U., Borgatti, S. P., \& Freeman, L. C. (2016). Maintaining the duality of closeness and betweenness centrality. Social networks, 44, 153-159.
doi: 10.1016/j.socnet.2015.08.003.
\bibitem{Brandes2022} Brandes, U., Laußmann, C., \& Rothe, J. (2022). Voting for centrality. In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems (pp. 1554-1556).
doi: 10.5555/3535850.3536032.
\bibitem{Brockmann2013} Brockmann, D., \& Helbing, D. (2013). The hidden geometry of complex, network-driven contagion phenomena. science, 342(6164), 1337-1342.
doi: 10.1126/science.1245200.
\bibitem{BrinPage1998} Brin, S., \& Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7), 107-117.
doi: 10.1016/S0169-7552(98)00110-X.
\bibitem{Bringmann2019} Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T. W., \& Snippe, E. (2019). What do centrality measures measure in psychological networks?. Journal of abnormal psychology, 128(8), 892–903.
doi: 10.1037/abn0000446.
\bibitem{Burt1992} Burt, R.S. \& Holes, S. (1992). Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge, MA.
\bibitem{Burt2004} Burt, R. S. (2004). Structural Holes and Good Ideas. American Journal of Sociology, 110(2), 349-399.
doi: 10.1086/421787.
\bibitem{Caporossi2012} Caporossi, G., Paiva, M., Vukičević, D., \& Marcelo, S. (2012). Centrality and betweenness: vertex and edge decomposition of the Wiener index. MATCH: communications in mathematical and in computer chemistry, 68(1), 293-302.
\bibitem{Carpenter2002} Carpenter, T., Karakostas, G., \& Shallcross, D. (2002). Practical issues and algorithms for analyzing terrorist networks. In Proceedings of the western simulation multiconference.
\bibitem{Chen2016} Chen, B., Wang, Z., \& Luo, C. (2016). Integrated evaluation approach for node importance of complex networks based on relative entropy. Journal of Systems Engineering and Electronics, 27(6), 1219-1226.
doi: 10.21629/JSEE.2016.06.10.
\bibitem{Chen2013} Chen, D. B., Gao, H., Lü, L., \& Zhou, T. (2013). Identifying influential nodes in large-scale directed networks: the role of clustering. PloS one, 8(10), e77455.
doi: 10.1371/journal.pone.0077455.
\bibitem{Chen2012} Chen, D., Lü, L., Shang, M. S., Zhang, Y. C., \& Zhou, T. (2012). Identifying influential nodes in complex networks. Physica a: Statistical mechanics and its applications, 391(4), 1777-1787.
doi: 10.1016/j.physa.2011.09.017.
\bibitem{Chen2014} Chen, D. B., Xiao, R., Zeng, A., \& Zhang, Y. C. (2014). Path diversity improves the identification of influential spreaders. Europhysics letters, 104(6), 68006.
doi: 10.1209/0295-5075/104/68006.
\bibitem{Chen2003} Chen, Y., Hu, A. Q., Yip, K. W., Hu, J., \& Zhong, Z. G. (2003). Finding the most vital node with respect to the number of spanning trees. In International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003 (Vol. 2, pp. 1670-1673). IEEE.
doi: 10.1109/ICNNSP.2003.1281204.
\bibitem{Chen2009} Chen, W., Wang, Y., \& Yang, S. (2009). Efficient influence maximization in social networks. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 199-208).
doi: 10.1145/1557019.1557047.
\bibitem{Chin2014} Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., \& Lin, C. Y. (2014). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC systems biology, 8(Suppl 4), S11.
doi: 10.1186/1752-0509-8-S4-S11.
\bibitem{Chin2003} Chin, C. S., \& Samanta, M. P. (2003). Global snapshot of a protein interaction network—a percolation based approach. Bioinformatics, 19(18), 2413-2419.
doi: 10.1093/bioinformatics/btg339.
\bibitem{Christensen2018} Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., \& Kwapil, T. R. (2018). Network structure of the Wisconsin Schizotypy Scales-Short Forms: Examining psychometric network filtering approaches. Behavior Research Methods, 50, 2531-2550.
doi: 10.3758/s13428-018-1032-9.
\bibitem{Cohen2008} Cohen, J. (2008). Trusses: Cohesive subgraphs for social network analysis. National security agency technical report, 16(3.1), 1-29.
\bibitem{Costenbader2003} Costenbader, E., \& Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Social networks, 25(4), 283-307.
doi: 10.1016/S0378-8733(03)00012-1.
\bibitem{Csató2017} Csató, L. (2017). Measuring centrality by a generalization of degree. Central European Journal of Operations Research, 25(4), 771-790.
doi: 10.1007/s10100-016-0439-6.
\bibitem{Curado2022} Curado, M., Rodriguez, R., Tortosa, L., \& Vicent, J. F. (2022). A new centrality measure in dense networks based on two-way random walk betweenness. Applied Mathematics and Computation, 412, 126560.
doi: 10.1016/j.amc.2021.126560.
\bibitem{Curado2023} Curado, M., Tortosa, L., \& Vicent, J. F. (2023). A novel measure to identify influential nodes: return random walk gravity centrality. Information Sciences, 628, 177-195.
doi: 10.1016/j.ins.2023.01.097.
\bibitem{Dai2019} Dai, J., Wang, B., Sheng, J., Sun, Z., Khawaja, F. R., Ullah, A., Dejene, D. A. \& Duan, G. (2019). Identifying influential nodes in complex networks based on local neighbor contribution. IEEE Access, 7, 131719-131731.
doi: 10.1109/ACCESS.2019.2939804.
\bibitem{DalCol2023} Dal Col, A., \& Petronetto, F. (2023). Graph regularization centrality. Physica A: Statistical Mechanics and its Applications, 628, 129188.
doi: 10.1016/j.physa.2023.129188.
\bibitem{Dangalchev2006} Dangalchev, C. (2006). Residual closeness in networks. Physica A: Statistical Mechanics and its Applications, 365(2), 556-564.
doi: 10.1016/j.physa.2005.12.020.
\bibitem{Das2018} Das, K., Samanta, S., \& Pal, M. (2018). Study on centrality measures in social networks: a survey. Social network analysis and mining, 8(1), 13.
doi: 10.1007/s13278-018-0493-2.
\bibitem{Arruda2014} De Arruda, G. F., Barbieri, A. L., Rodriguez, P. M., Rodrigues, F. A., Moreno, Y., \& Costa, L. D. F. (2014). Role of centrality for the identification of influential spreaders in complex networks. Physical Review E, 90(3), 032812.
doi: 10.1103/PhysRevE.90.032812.
\bibitem{Rio2009} del Rio, G., Koschützki, D., \& Coello, G. (2009). How to identify essential genes from molecular networks?. BMC systems biology, 3(1), 102.
doi: 10.1186/1752-0509-3-102.
\bibitem{Debono2014} Debono, M., Lauri, J., \& Sciriha, I. (2014). Balanced centrality of networks. International Scholarly Research Notices, 2014(1), 871038.
doi: 10.1155/2014/871038.
\bibitem{DePaolis2022} DePaolis, F., Murphy, P., \& De Paolis Kaluza, M. C. (2022). Identifying key sectors in the regional economy: a network analysis approach using input-output data. Applied Network Science, 7(1), 86.
doi: 10.1007/s41109-022-00519-2.
\bibitem{Devriendt2022}Devriendt, K., \& Lambiotte, R. (2022). Discrete curvature on graphs from the effective resistance. Journal of Physics: Complexity, 3(2), 025008.
doi: 10.1088/2632-072X/ac730d.
\bibitem{Dolev2010} Dolev, S., Elovici, Y., \& Puzis, R. (2010). Routing betweenness centrality. Journal of the ACM (JACM), 57(4), 1-27.
doi: 10.1145/1734213.1734219.
\bibitem{Dong2018} Dong, J., Ye, F., Chen, W., \& Wu, J. (2018). Identifying influential nodes in complex networks via semi-local centrality. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5). IEEE.
doi: 10.1109/ISCAS.2018.8351889.
\bibitem{Du2015} Du, Y., Gao, C., Chen, X., Hu, Y., Sadiq, R., \& Deng, Y. (2015). A new closeness centrality measure via effective distance in complex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(3).
doi: 10.1063/1.4916215.
\bibitem{Du2014} Du, Y., Gao, C., Hu, Y., Mahadevan, S., \& Deng, Y. (2014). A new method of identifying influential nodes in complex networks based on TOPSIS. Physica A: Statistical Mechanics and its Applications, 399, 57-69.
doi: 10.1016/j.physa.2013.12.031.
\bibitem{Duron2020} Durón C (2020) Heatmap centrality: A new measure to identify super-spreader nodes in scale-free networks. PLOS ONE 15(7): e0235690.
doi: 10.1371/journal.pone.0235690.
\bibitem{Ellens2011} Ellens, W., Spieksma, F. M., Van Mieghem, P., Jamakovic, A., \& Kooij, R. E. (2011). Effective graph resistance. Linear algebra and its applications, 435(10), 2491-2506.
doi: 10.1016/j.laa.2011.02.024.
\bibitem{Engsig2024} Engsig, M., Tejedor, A., Moreno, Y., Foufoula-Georgiou, E., \& Kasmi, C. (2024). DomiRank Centrality reveals structural fragility of complex networks via node dominance. Nature communications, 15(1), 56.
doi: 10.1038/s41467-023-44257-0.
\bibitem{Ravasz2012} Ercsey-Ravasz, M., Lichtenwalter, R. N., Chawla, N. V., \& Toroczkai, Z. (2012). Range-limited centrality measures in complex networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 85(6), 066103.
doi: 10.1103/PhysRevE.85.066103.
\bibitem{Estrada2007} Estrada, E. (2007). Characterization of topological keystone species: Local, global and “meso-scale” centralities in food webs. Ecological Complexity, 4(1-2), 48-57.
doi: 10.1016/j.ecocom.2007.02.018.
\bibitem{Estrada2010c} Estrada, E. (2010). Generalized walks-based centrality measures for complex biological networks. Journal of theoretical biology, 263(4), 556-565.
doi: 10.1016/j.jtbi.2010.01.014.
\bibitem{Estrada2005} Estrada, E., \& Rodríguez-Velázquez, J. A. (2005). Spectral measures of bipartivity in complex networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 72(4), 046105.
doi: 10.1103/PhysRevE.72.046105.
\bibitem{Estrada} Estrada, E., \& Rodríguez-Velázquez, J. A. (2005). Subgraph centrality in complex networks. Physical Review E, 71(5).
doi: 10.1103/PhysRevE.71.056103.
\bibitem{Estrada2010} Estrada, E., \& Hatano, N. (2010). A vibrational approach to node centrality and vulnerability in complex networks. Physica A: Statistical Mechanics and its Applications, 389(17), 3648-3660.
doi: 10.1016/j.physa.2010.03.030.
\bibitem{Estrada2010b} Estrada, E., \& Higham, D. J. (2010). Network properties revealed through matrix functions. SIAM review, 52(4), 696-714.
doi: 10.1137/090761070.
\bibitem{Estrada2009} Estrada, E., Higham, D. J., \& Hatano, N. (2009). Communicability betweenness in complex networks. Physica A: Statistical Mechanics and its Applications, 388(5), 764-774.
doi: 10.1016/j.physa.2008.11.011.
\bibitem{Everett2005} Everett, M., \& Borgatti, S. P. (2005). Ego network betweenness. Social networks, 27(1), 31-38.
doi: 10.1016/j.socnet.2004.11.007.
\bibitem{Everett2010} Everett, M. G., \& Borgatti, S. P. (2010). Induced, endogenous and exogenous centrality. Social Networks, 32(4), 339-344.
doi: 10.1016/j.socnet.2010.06.004.
\bibitem{Faghani2013} Faghani, M. R., \& Nguyen, U. T. (2013). A study of XSS worm propagation and detection mechanisms in online social networks. IEEE transactions on information forensics and security, 8(11), 1815-1826.
doi: 10.1109/TIFS.2013.2280884.
\bibitem{Fei2017} Fei, L., Mo, H., \& Deng, Y. (2017). A new method to identify influential nodes based on combining of existing centrality measures. Modern Physics Letters B, 31(26), 1750243.
doi: 10.1142/S0217984917502438.
\bibitem{Fei2018} Fei, L., Zhang, Q., \& Deng, Y. (2018). Identifying influential nodes in complex networks based on the inverse-square law. Physica A: Statistical Mechanics and its Applications, 512, 1044-1059.
doi: 10.1016/j.physa.2018.08.135.
\bibitem{Fiedler1973} Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2), 298-305.
\bibitem{Ford1962} Ford, L.R., \& Fulkerson, D.R. (1962). Flows in Networks. Princeton University Press, Princeton.
\bibitem{Frantz2009} Frantz, T. L., Cataldo, M., \& Carley, K. M. (2009). Robustness of centrality measures under uncertainty: Examining the role of network topology. Computational and Mathematical Organization Theory, 15(4), 303-328.
doi: 10.1007/s10588-009-9063-5.
\bibitem{Freeman1977} Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41.
doi: 10.2307/3033543.
\bibitem{Freeman1978} Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks, 1(3), 215-239.
doi: 10.1016/0378-8733(78)90021-7.
\bibitem{Freeman1982} Freeman, L. C. (1982). Centered graphs and the construction of ego networks. Mathematical Social Sciences 3, 291-304.
doi: 10.1016/0165-4896(82)90076-2.
\bibitem{Freeman1991} Freeman, L. C., Borgatti, S. P., \& White, D. R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow. Social networks, 13(2), 141-154.
doi: 10.1016/0378-8733(91)90017-N.
\bibitem{Friedkin1991} Friedkin, N. E. (1991). Theoretical Foundations for Centrality Measures. American Journal of Sociology, 96(6), 1478-1504.
doi: 10.1086/229694.
\bibitem{Fu2010} Fu, L., Gao, L., \& Ma, X. (2010). A centrality measure based on spectral optimization of modularity density. Science China Information Sciences, 53, 1727-1737.
doi: 10.1007/s11432-010-4043-4.
\bibitem{Fu2015} Fu, Y. H., Huang, C. Y., \& Sun, C. T. (2015). Identifying super‐spreader nodes in complex networks. Mathematical Problems in Engineering, 2015(1), 675713.
doi: 10.1155/2015/675713.
\bibitem{Fu2015b} Fu, Y. H., Huang, C. Y., \& Sun, C. T. (2015). Using global diversity and local topology features to identify influential network spreaders. Physica A: Statistical Mechanics and its Applications, 433, 344-355.
doi: 10.1016/j.physa.2015.03.042.
\bibitem{Gao2013} Gao, C., Lan, X., Zhang, X., \& Deng, Y. (2013). A bio-inspired methodology of identifying influential nodes in complex networks. PloS one, 8(6), e66732.
doi: 10.1371/journal.pone.0066732.
\bibitem{Gao2019} Gao, L., Yu, S., Li, M., Shen, Z., \& Gao, Z. (2019). Weighted H-index for identifying influential spreaders. Symmetry, 11(10), 1263.
doi: 10.3390/sym11101263.
\bibitem{Gao2014} Gao, S., Ma, J., Chen, Z., Wang, G., \& Xing, C. (2014). Ranking the spreading ability of nodes in complex networks based on local structure. Physica A: Statistical Mechanics and its Applications, 403, 130-147.
doi: 10.1016/j.physa.2014.02.032.
\bibitem{Gao2009} Gao, W., Li, Q., Zhao, B., \& Cao, G. (2009). Multicasting in delay tolerant networks: a social network perspective. In Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing (pp. 299-308).
doi: 10.1145/1530748.1530790.
\bibitem{Geisberger2008} Geisberger, R., Sanders, P., \& Schultes, D. (2008). Better approximation of betweenness centrality. In 2008 Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments (ALENEX) (pp. 90-100). Society for Industrial and Applied Mathematics.
doi: 10.1137/1.9781611972887.9.
\bibitem{Ghalmane2018} Ghalmane, Z., El Hassouni, M., \& Cherifi, H. (2018). Betweenness centrality for networks with non-overlapping community structure. In 2018 IEEE workshop on complexity in engineering (COMPENG) (pp. 1-5). IEEE.
doi: 10.1109/CompEng.2018.8536229.
\bibitem{Ghalmane2019} Ghalmane, Z., Hassouni, M. E., \& Cherifi, H. (2019). Immunization of networks with non-overlapping community structure. Social Network Analysis and Mining, 9, 1-22.
doi: 10.1007/s13278-019-0591-9.
\bibitem{Ghavasieh2021} Ghavasieh, A., Stella, M., Biamonte, J., \& De Domenico, M. (2021). Unraveling the effects of multiscale network entanglement on empirical systems. Communications Physics, 4(1), 129.
doi: 10.1038/s42005-021-00633-0.
\bibitem{Gialampoukidis2016} Gialampoukidis, I., Kalpakis, G., Tsikrika, T., Vrochidis, S., \& Kompatsiaris, I. (2016). Key player identification in terrorism-related social media networks using centrality measures. In 2016 European Intelligence and Security Informatics Conference (EISIC) (pp. 112-115). IEEE.
doi: 10.1109/EISIC.2016.029.
\bibitem{Goh2001} Goh, K. I., Kahng, B., \& Kim, D. (2001). Universal behavior of load distribution in scale-free networks. Physical review letters, 87(27), 278701.
doi: 10.1103/PhysRevLett.87.278701.
\bibitem{Guimaraes1972} Guimaraes, L. L. (1973). Communication integration in modern and traditional social systems: a comparative analysis across twenty communities of Minas Gerais, Brazil. PhD Thesis, Michigan State Univ., East Lansing.
doi: 10.25335/jcw2-6990.
\bibitem{Guimerà2005} Guimera, R., \& Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. nature, 433(7028), 895-900.
doi: 10.1038/nature03288.
\bibitem{Guo2020} Guo, C., Yang, L., Chen, X., Chen, D., Gao, H., \& Ma, J. (2020). Influential nodes identification in complex networks via information entropy. Entropy, 22(2), 242.
doi: 10.3390/e22020242.
\bibitem{Guo2024} Guo, H., Wang, S., Yan, X., \& Zhang, K. (2024). Node importance evaluation method of complex network based on the fusion gravity model. Chaos, Solitons \& Fractals, 183, 114924.
doi: 10.1016/j.chaos.2024.114924.
\bibitem{Guo2016} Guo, L., Lin, J. H., Guo, Q., \& Liu, J. G. (2016). Identifying multiple influential spreaders in term of the distance-based coloring. Physics Letters A, 380(7-8), 837-842.
doi: 10.1016/j.physleta.2015.12.031.
\bibitem{Gupta2016} Gupta, N., Singh, A., \& Cherifi, H. (2016). Centrality measures for networks with community structure. Physica A: Statistical Mechanics and its Applications, 452, 46-59.
doi: 10.1016/j.physa.2016.01.066.
\bibitem{Gupta2021} Gupta, M., \& Mishra, R. (2021). Spreading the information in complex networks: Identifying a set of top-N influential nodes using network structure. Decision Support Systems, 149, 113608.
doi: 10.1016/j.dss.2021.113608.
\bibitem{Hage1995} Hage, P., \& Harary, F. (1995). Eccentricity and centrality in networks. Social networks, 17(1), 57-63.
doi: 10.1016/0378-8733(94)00248-9.
\bibitem{Hajarathaiah2022} Hajarathaiah, K., Enduri, M. K., \& Anamalamudi, S. (2022). Efficient algorithm for finding the influential nodes using local relative change of average shortest path. Physica A: Statistical Mechanics and its Applications, 591, 126708.
doi: 10.1016/j.physa.2021.126708.
\bibitem{Hanneman2005} Hanneman, R. A., \& Riddle, M. (2005). Introduction to social network methods.
\bibitem{Harris1954} Harris, C. D. (1954). The, Market as a Factor in the Localization of Industry in the United States. Annals of the association of American geographers, 44(4), 315-348.
doi: 10.1080/00045605409352140.
\bibitem{Higley1991} Higley, J., Hoffmann-Lange, U., Kadushin, C., \& Moore, G. (1991). Elite integration in stable democracies: a reconsideration. European Sociological Review, 7(1), 35-53.
doi: 10.1093/oxfordjournals.esr.a036576.
\bibitem{Honey2007} Honey, C. J., Kötter, R., Breakspear, M., \& Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24), 10240-10245.
doi: 10.1073/pnas.0701519104.
\bibitem{Hou2012} Hou, B., Yao, Y., \& Liao, D. (2012). Identifying all-around nodes for spreading dynamics in complex networks. Physica A: Statistical Mechanics and its Applications, 391(15), 4012-4017.
doi: 10.1016/j.physa.2012.02.033.
\bibitem{Hu2016} Hu, J., Du, Y., Mo, H., Wei, D., \& Deng, Y. (2016). A modified weighted TOPSIS to identify influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 444, 73-85.
doi: 10.1016/j.physa.2015.09.028.
\bibitem{Hu2015} Hu, P., Fan, W., \& Mei, S. (2015). Identifying node importance in complex networks. Physica A: Statistical Mechanics and its Applications, 429, 169-176.
doi: 10.1016/j.physa.2015.02.002.
\bibitem{Hu2018} Hu, P., \& Mei, T. (2018). Ranking influential nodes in complex networks with structural holes. Physica A: Statistical Mechanics and its Applications, 490, 624-631.
doi: 10.1016/j.physa.2017.08.049.
\bibitem{Huang2020}Huang, X., Chen, D., Wang, D., \& Ren, T. (2020). Identifying influencers in social networks. Entropy, 22(4), 450.
doi: 10.3390/e22040450.
\bibitem{Huang2024} Huang, Y., Wang, H., Ren, X. L., \& Lü, L. (2024). Identifying key players in complex networks via network entanglement. Communications physics, 7(1), 19.
doi: 10.1038/s42005-023-01483-8.
\bibitem{Hubbell1965} Hubbell, C. H. (1965). An Input-Output Approach to Clique Identification. Sociometry, 28(4), 377-399.
doi: 10.2307/2785990.
\bibitem{Hwang2009} Hwang, Y. C., Lin, C. C., Chang, J. Y., Mori, H., Juan, H. F., \& Huang, H. C. (2009). Predicting essential genes based on network and sequence analysis. Molecular BioSystems, 5(12), 1672-1678.
doi: 10.1039/B900611G.
\bibitem{Hwang2006} Hwang, W., Cho, Y. R., Zhang, A., \& Ramanathan, M. (2006). Bridging centrality: identifying bridging nodes in scale-free networks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 20-23).
\bibitem{Iannelli2017} Iannelli, F., Koher, A., Brockmann, D., Hövel, P., \& Sokolov, I. M. (2017). Effective distances for epidemics spreading on complex networks. Physical Review E, 95(1), 012313.
doi: 10.1103/PhysRevE.95.012313.
\bibitem{Iannelli2018} Iannelli, F., Mariani, M. S., \& Sokolov, I. M. (2018). Influencers identification in complex networks through reaction-diffusion dynamics. Physical Review E, 98(6), 062302.
doi: 10.1103/PhysRevE.98.062302.
\bibitem{Ibnoulouafi2018} Ibnoulouafi, A., El Haziti, M., \& Cherifi, H. (2018). M-centrality: identifying key nodes based on global position and local degree variation. Journal of Statistical Mechanics: Theory and Experiment, 2018(7), 073407.
doi: 10.1088/1742-5468/aace08.
\bibitem{Ilyas2011} Ilyas, M. U., \& Radha, H. (2011). Identifying influential nodes in online social networks using principal component centrality. In 2011 IEEE International Conference on Communications (ICC) (pp. 1-5). IEEE.
doi: 10.1109/icc.2011.5963147.
\bibitem{Interdonato2015} Interdonato, R., \& Tagarelli, A. (2015). Ranking Silent Nodes in Information Networks: a quantitative approach and applications. Physics Procedia, 62, 36-41.
doi: 10.1016/j.phpro.2015.02.008.
\bibitem{Jackson2008} Jackson, M. O. (2008). Social and economic networks (Vol. 3, p. 519). Princeton: Princeton university press.
doi: 10.2307/j.ctvcm4gh1.
\bibitem{Jackson2020} Jackson, M. O. (2020). A typology of social capital and associated network measures. Social choice and welfare, 54(2), 311-336.
doi: 10.1007/s00355-019-01189-3.
\bibitem{Jalili2015} Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S. S., Yaghmaie, M., Ghavamzadeh, A., \& Alimoghaddam, K. (2015). CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. PloS one, 10(11), e0143111.
doi: 10.1371/journal.pone.0143111.
\bibitem{Jeh2002} Jeh, G., \& Widom, J. (2002). Simrank: a measure of structural-context similarity. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 538-543).
doi: 10.1145/775047.775126.
\bibitem{Jia2011} Jia-sheng, W., Xiao-ping, W., Bo, Y., \& Jiang-wei, G. (2011). Improved method of node importance evaluation based on node contraction in complex networks. Procedia Engineering, 15, 1600-1604.
doi: 10.1016/j.proeng.2011.08.298.
\bibitem{Joyce2010} Joyce, K. E., Laurienti, P. J., Burdette, J. H., \& Hayasaka, S. (2010). A new measure of centrality for brain networks. PloS one, 5(8), e12200.
doi: 10.1371/journal.pone.0012200.
\bibitem{Kalinka2011} Kalinka, A. T., \& Tomancak, P. (2011). linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics, 27(14), 2011-2012.
doi: 10.1093/bioinformatics/btr311.
\bibitem{Kamvar2003} Kamvar, S. D., Schlosser, M. T., \& Garcia-Molina, H. (2003). The eigentrust algorithm for reputation management in p2p networks. In Proceedings of the 12th international conference on World Wide Web (pp. 640-651).
doi: 10.1145/775152.775242.
\bibitem{Kang2011} Kang, U., Papadimitriou, S., Sun, J., \& Tong, H. (2011). Centralities in large networks: Algorithms and observations. In Proceedings of the 2011 SIAM international conference on data mining, pp. 119-130. Society for Industrial and Applied Mathematics.
doi: 10.1137/1.9781611972818.11.
\bibitem{Katz1953} Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43.
doi: 10.1007/BF02289026.
\bibitem{Kendall1955} Kendall, M. G. (1955). Further contributions to the theory of paired comparisons. Biometrics, 11(1), 43-62.
doi: 10.2307/3001479.
\bibitem{Kermarrec2011} Kermarrec, A. M., Le Merrer, E., Sericola, B., \& Trédan, G. (2011). Second order centrality: Distributed assessment of nodes criticity in complex networks. Computer Communications, 34(5), 619-628.
doi: 10.1016/j.comcom.2010.06.00.
\bibitem{Kim2012} Kim, H., \& Yoneki, E. (2012). Influential neighbours selection for information diffusion in online social networks. In 2012 21st international conference on computer communications and networks (ICCCN) (pp. 1-7). IEEE.
doi: 10.1109/ICCCN.2012.6289230.
\bibitem{Kirkland2010} Kirkland, S. (2010). Algebraic connectivity for vertex-deleted subgraphs, and a notion of vertex centrality. Discrete Mathematics, 310(4), 911-921.
doi: 10.1016/j.disc.2009.10.011.
\bibitem{Kitsak2010} Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., \& Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature physics, 6(11), 888-893.
doi: 10.1038/nphys1746.
\bibitem{Kivimäki2016} Kivimäki, I., Lebichot, B., Saramäki, J., \& Saerens, M. (2016). Two betweenness centrality measures based on randomized shortest paths. Scientific reports, 6(1), 19668.
doi: 10.1038/srep19668.
\bibitem{Kleinberg1999} Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. J. ACM 46, 604-632.
doi: 10.1145/324133.324140.
\bibitem{Klemm2012} Klemm, K., Serrano, M. Á., Eguíluz, V. M., \& Miguel, M. S. (2012). A measure of individual role in collective dynamics. Scientific reports, 2(1), 292.
doi: 10.1038/srep00292.
\bibitem{Knill2011} Knill, O. (2011). A graph theoretical Gauss-Bonnet-Chern theorem. arXiv preprint arXiv:1111.5395.
doi: 10.48550/arXiv.1111.5395.
\bibitem{Knill2012} Knill, O. (2012). On index expectation and curvature for networks. arXiv preprint arXiv:1202.4514.
doi: 10.48550/arXiv.1202.4514.
\bibitem{Konstantinova2006} Konstantinova, E. V. (2006). On some applications of information indices in chemical graph theory. General Theory of Information Transfer and Combinatorics, 831-852.
doi: 10.1016/j.endm.2005.07.071.
\bibitem{Korn2009} Korn, A., Schubert, A., \& Telcs, A. (2009). Lobby index in networks. Physica A: Statistical Mechanics and its Applications, 388(11), 2221-2226.
doi: 10.1016/j.physa.2009.02.013.
\bibitem{Koschützki2005} Koschützki, D., Lehmann, K. A., Tenfelde-Podehl, D., \& Zlotowski, O. (2005). Advanced centrality concepts. In Network analysis: Methodological foundations (pp. 83-111). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-540-31955-9\_5.
\bibitem{Kovács2010} Kovács, I. A., Palotai, R., Szalay, M. S., \& Csermely, P. (2010). Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PloS one, 5(9), e12528.
doi: 10.1371/journal.pone.0012528.
\bibitem{Kumar2020} Kumar, S., \& Panda, B. S. (2020). Identifying influential nodes in Social Networks: Neighborhood Coreness based voting approach. Physica A: Statistical Mechanics and its Applications, 553, 124215.
doi: 10.1016/j.physa.2020.124215.
\bibitem{Kumar2022} Kumar, S., \& Panda, A. (2022). Identifying influential nodes in weighted complex networks using an improved WVoteRank approach. Applied intelligence, 52(2), 1838-1852.
doi: 10.1109/ACCESS.2017.2679038.
\bibitem{Kundu2011} Kundu, S., Murthy, C. A., \& Pal, S. K. (2011). A new centrality measure for influence maximization in social networks. In International conference on pattern recognition and machine intelligence (pp. 242-247). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-21786-9\_40.
\bibitem{Landau1895} Landau, E. (1895). Zur relativen wertbemessung der turnierresultate. Deutsches Wochenschach, 11(366-369), 3.
\bibitem{Landherr2010} Landherr, A., Friedl, B., \& Heidemann, J. (2010). A critical review of centrality measures in social networks. Business \& Information Systems Engineering, 2(6), 371-385.
doi: 10.1007/s12599-010-0127-3.
\bibitem{Latora2001} Latora, V., \& Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87(19), 198701.
doi: 10.1103/PhysRevLett.87.198701.
\bibitem{Latora2007} Latora, V., \& Marchiori, M. (2007). A measure of centrality based on network efficiency. New Journal of Physics, 9(6), 188.
doi: 10.1088/1367-2630/9/6/188.
\bibitem{Leavitt1951} Leavitt, H. J. (1951). Some effects of certain communication patterns on group performance. The journal of abnormal and social psychology, 46(1), 38.
doi: 10.1037/h0057189.
\bibitem{Lawyer2015} Lawyer, G. (2015). Understanding the influence of all nodes in a network. Scientific reports, 5(1), 8665.
doi: 10.1038/srep08665.
\bibitem{Lempel2001} Lempel, R., \& Moran, S. (2001). SALSA: the stochastic approach for link-structure analysis. ACM Transactions on Information Systems (TOIS), 19(2), 131-160.
doi: 10.1145/382979.383041.
\bibitem{PVM2015} Li, C., Li, Q., Van Mieghem, P., Stanley, H. E., \& Wang, H. (2015). Correlation between centrality metrics and their application to the opinion model. The European Physical Journal B, 88(3), 65.
doi: 10.1140/epjb/e2015-50671-y.
\bibitem{CLi2018} Li, C., Wang, L., Sun, S., \& Xia, C. (2018). Identification of influential spreaders based on classified neighbors in real-world complex networks. Applied Mathematics and Computation, 320, 512-523.
doi: 10.1016/j.amc.2017.10.001.
\bibitem{HLi2021b} Li, H., \& Deng, Y. (2021). Local volume dimension: A novel approach for important nodes identification in complex networks. International Journal of Modern Physics B, 35(05), 2150069.
doi: 10.1142/S0217979221500697.
\bibitem{HLi2021} Li, H., Shang, Q., \& Deng, Y. (2021). A generalized gravity model for influential spreaders identification in complex networks. Chaos, Solitons \& Fractals, 143, 110456.
doi: 10.1016/j.chaos.2020.110456.
\bibitem{Li2009} Li, J., \& Willett, P. (2009). ArticleRank: a PageRank‐based alternative to numbers of citations for analysing citation networks. In Aslib Proceedings (Vol. 61, No. 6, pp. 605-618). Emerald Group Publishing Limited.
doi: 10.1108/00012530911005544.
\bibitem{Li2011} Li, M., Wang, J., Chen, X., Wang, H., \& Pan, Y. (2011). A local average connectivity-based method for identifying essential proteins from the network level. Computational biology and chemistry, 35(3), 143-150.
doi: 10.1016/j.compbiolchem.2011.04.002.
\bibitem{Li2018} Li, M., Zhang, R., Hu, R., Yang, F., Yao, Y., \& Yuan, Y. (2018). Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient. International Journal of Modern Physics B, 32(06), 1850118.
doi: 10.1142/S0217979218501187.
\bibitem{Li2014} Li, Q., Zhou, T., Lü, L., \& Chen, D. (2014). Identifying influential spreaders by weighted LeaderRank. Physica A: Statistical Mechanics and its Applications, 404, 47-55.
doi: 10.1016/j.physa.2014.02.041.
\bibitem{SLi2021} Li, S., \& Xiao, F. (2021). The identification of crucial spreaders in complex networks by effective gravity model. Information Sciences, 578, 725-749.
doi: 10.1016/j.ins.2021.08.026.
\bibitem{YLi2019} Li, Y., Cai, W., Li, Y., \& Du, X. (2019). Key node ranking in complex networks: A novel entropy and mutual information-based approach. Entropy, 22(1), 52.
doi: 10.3390/e22010052.
\bibitem{Li2021} Li, Z., \& Huang, X. (2021). Identifying influential spreaders in complex networks by an improved gravity model. Scientific reports, 11(1), 22194.
doi: 10.1038/s41598-021-01218-1.
\bibitem{Li2022} Li, Z., \& Huang, X. (2022). Identifying influential spreaders by gravity model considering multi-characteristics of nodes. Scientific Reports, 12(1), 9879.
doi: 10.1038/s41598-022-14005-3.
\bibitem{Li2019} Li, Z., Ren, T., Ma, X., Liu, S., Zhang, Y. \& Zhou, T. Identifying influential spreaders by gravity model. Sci Rep 9, 8387 (2019).
doi: 10.1038/s41598-019-44930-9.
\bibitem{LiYa2019} Li-Ya, H., Ping-Chuan, T., You-Liang, H., Yi, Z., \& Xie-Feng, C. (2019). Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, 68(12).
doi: 10.3390/e22030364.
\bibitem{Lin2008} Lin, C. Y., Chin, C. H., Wu, H. H., Chen, S. H., Ho, C. W., \& Ko, M. T. (2008). Hubba: hub objects analyzer—a framework of interactome hubs identification for network biology. Nucleic acids research, 36, W438-W443.
doi: 10.1093/nar/gkn257.
\bibitem{Lin2014} Lin, J. H., Guo, Q., Dong, W. Z., Tang, L. Y., \& Liu, J. G. (2014). Identifying the node spreading influence with largest k-core values. Physics Letters A, 378(45), 3279-3284.
doi: 10.1016/j.physleta.2014.09.054.
\bibitem{Lin1976} Lin, N. (1976). Foundations of social research. McGraw-Hill, New York.
doi: 10.2307/2066441.
\bibitem{Liu2020} Liu, F., Wang, Z., \& Deng, Y. (2020). GMM: A generalized mechanics model for identifying the importance of nodes in complex networks. Knowledge-Based Systems, 193, 105464.
doi: 10.1016/j.knosys.2019.105464.
\bibitem{HLiu2013} Liu, H., Yu, X., \& Lu, J. (2013). Identifying TOP-N opinion leaders on local social network. In IET International Conference on Smart and Sustainable City 2013 (ICSSC 2013) (pp. 268-271). Stevenage UK: IET.
doi: 10.1049/cp.2013.1970.
\bibitem{Liu2013} Liu, J. G., Ren, Z. M., \& Guo, Q. (2013). Ranking the spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications, 392(18), 4154-4159.
doi: 10.1016/j.physa.2013.04.037.
\bibitem{JLiu2016} Liu, J., Xiong, Q., Shi, W., Shi, X., \& Wang, K. (2016). Evaluating the importance of nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 452, 209-219.
doi: 10.1016/j.physa.2016.02.049.
\bibitem{JGLiu2016} Liu, J. G., Lin, J. H., Guo, Q., \& Zhou, T. (2016). Locating influential nodes via dynamics-sensitive centrality. Scientific reports, 6(1), 21380.
doi: 10.1038/srep21380.
\bibitem{LiuJ2023} Liu, J., \& Zheng, J. (2023). Identifying important nodes in complex networks based on extended degree and E-shell hierarchy decomposition. Scientific Reports, 13(1), 3197.
doi: 10.1038/s41598-023-30308-5.
\bibitem{Liu2021} Liu, P., Li, L., Fang, S., \& Yao, Y. (2021). Identifying influential nodes in social networks: A voting approach. Chaos, Solitons \& Fractals, 152, 111309.
doi: 10.1016/j.chaos.2021.111309.
\bibitem{Liu2018} Liu, Q., Zhu, Y. X., Jia, Y., Deng, L., Zhou, B., Zhu, J. X., \& Zou, P. (2018). Leveraging local h-index to identify and rank influential spreaders in networks. Physica A: Statistical Mechanics and its Applications, 512, 379-391.
doi: 10.1016/j.physa.2018.08.053.
\bibitem{Liu2014} Liu, Y., Jin, J., Zhang, Y., \& Xu, C. (2014). A new clustering algorithm based on data field in complex networks. The Journal of Supercomputing, 67, 723-737.
doi: 10.1007/s11227-013-0984-x.
\bibitem{YLiu2015} Liu, Y., Tang, M., Yue, J., \& Gong, J. (2015). Identify influential spreaders in complex real-world networks. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom) (pp. 1144-1148). IEEE.
doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.209.
\bibitem{YLiuTang2015} Liu, Y., Tang, M., Zhou, T., \& Do, Y. (2015). Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics. Scientific reports, 5(1), 13172.
doi: 10.1038/srep13172.
\bibitem{YLiu2016} Liu, Y., Tang, M., Zhou, T., \& Do, Y. (2016). Identify influential spreaders in complex networks, the role of neighborhood. Physica A: Statistical Mechanics and its Applications, 452, 289-298.
doi: 10.1016/j.physa.2016.02.028.
\bibitem{Liu2017} Liu, Y., Tang, M., Do, Y., \& Hui, P. M. (2017). Accurate ranking of influential spreaders in networks based on dynamically asymmetric link weights. Physical Review E, 96(2), 022323.
doi: 10.1103/PhysRevE.96.022323.
\bibitem{Liu2016} Liu, Y., Wei, B., Du, Y., Xiao, F., \& Deng, Y. (2016). Identifying influential spreaders by weight degree centrality in complex networks. Chaos, Solitons \& Fractals, 86, 1-7.
doi: 10.1016/j.chaos.2016.01.030.
\bibitem{ZLiu2015} Liu, Z., Jiang, C., Wang, J., \& Yu, H. (2015). The node importance in actual complex networks based on a multi-attribute ranking method. Knowledge-Based Systems, 84, 56-66.
doi: 10.1016/j.knosys.2015.03.026.
\bibitem{Lü2016} Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C., \& Zhou, T. (2016). Vital nodes identification in complex networks. Physics reports, 650, 1-63.
doi: 10.1016/j.physrep.2016.06.007.
\bibitem{Lü2011} Lü, L., Zhang, Y. C., Yeung, C. H., \& Zhou, T. (2011). Leaders in social networks, the delicious case. PloS one, 6(6), e21202.
doi: 10.1371/journal.pone.0021202.
\bibitem{Lu2016} Lü, L., Zhou, T., Zhang, Q. M., \& Stanley, H. E. (2016). The H-index of a network node and its relation to degree and coreness. Nature communications, 7(1), 10168.
doi: 10.1038/ncomms10168.
\bibitem{Luan2021}Luan, Y., Bao, Z., \& Zhang, H. (2021). Identifying influential spreaders in complex networks by considering the impact of the number of shortest paths. Journal of Systems Science and Complexity, 34(6), 2168-2181.
doi: 10.1007/s11424-021-0111-7.
\bibitem{Lv2019} Lv, Z., Zhao, N., Xiong, F., \& Chen, N. (2019). A novel measure of identifying influential nodes in complex networks. Physica A: Statistical Mechanics and Its Applications, 523, 488-497.
doi: 10.1016/j.physa.2019.01.136.
\bibitem{Ma2015} Ma, L. L., Ma, C., Zhang, H. F. \& Wang, B. H. Identifying influential spreaders in complex networks based on gravity formula. Physica A 451, 205-212 (2015).
doi: 10.1016/j.physa.2015.12.162.
\bibitem{Ma2017} Ma, Q., \& Ma, J. (2017). Identifying and ranking influential spreaders in complex networks with consideration of spreading probability. Physica A: Statistical Mechanics and its Applications, 465, 312-330.
doi: 10.1016/j.physa.2016.08.041.
\bibitem{Ma2019} Ma, Y., Cao, Z., \& Qi, X. (2019). Quasi-Laplacian centrality: A new vertex centrality measurement based on Quasi-Laplacian energy of networks. Physica A: Statistical mechanics and its applications, 527, 121130.
doi: 10.1016/j.physa.2019.121130.
\bibitem{Macker2016} Macker, J. P. (2016). An improved local bridging centrality model for distributed network analytics. In MILCOM 2016-2016 IEEE Military Communications Conference (pp. 600-605). IEEE. doi: 10.1109/MILCOM.2016.7795393.
doi: 10.1109/MILCOM.2016.7795393.
\bibitem{Madotto2016} Madotto, A., \& Liu, J. (2016). Super-spreader identification using meta-centrality. Scientific reports, 6(1), 38994.
doi: 10.1038/srep38994.
\bibitem{Magelinski2021} Magelinski, T., Bartulovic, M., \& Carley, K. M. (2021). Measuring node contribution to community structure with modularity vitality. IEEE Transactions on Network Science and Engineering, 8(1), 707-723.
doi: 10.1109/TNSE.2020.3049068.
\bibitem{Mahdi2024} Mahdi J. (2024). Centiserver: the most comprehensive centrality resource and web application for centrality measures calculation. Available from:
https://www.centiserver.ir/centrality/list/
(accessed on 1 May 2025).
\bibitem{Maji2020} Maji, G. (2020). Influential spreaders identification in complex networks with potential edge weight based k-shell degree neighborhood method. Journal of Computational Science, 39, 101055.
doi: 10.1016/j.jocs.2019.101055.
\bibitem{Maji2021} Maji, G., Dutta, A., Malta, M. C., \& Sen, S. (2021). Identifying and ranking super spreaders in real world complex networks without influence overlap. Expert Systems with Applications, 179, 115061.
doi: 10.1016/j.eswa.2021.115061.
\bibitem{Maji2020c} Maji, G., Mandal, S., \& Sen, S. (2020). A systematic survey on influential spreaders identification in complex networks with a focus on K-shell based techniques. Expert Systems with Applications, 161, 113681.
doi: 10.1016/j.eswa.2020.113681.
\bibitem{Maji2020b} Maji, G., Namtirtha, A., Dutta, A., \& Malta, M. C. (2020). Influential spreaders identification in complex networks with improved k-shell hybrid method. Expert Systems with Applications, 144, 113092.
doi: 10.1016/j.eswa.2019.113092.
\bibitem{Malliaros2016} Malliaros, F. D., Rossi, M. E. G., \& Vazirgiannis, M. (2016). Locating influential nodes in complex networks. Scientific reports, 6(1), 19307.
doi: 10.1038/srep19307.
\bibitem{Marsden2002} Marsden, P. V. (2002). Egocentric and sociocentric measures of network centrality. Social networks, 24(4), 407-422.
doi: 10.1016/S0378-8733(02)00016-3.
\bibitem{Markovsky1988} Markovsky, B., Willer, D., \& Patton, T. (1988). Power relations in exchange networks. American sociological review, 220-236.
doi: 10.2307/2095634.
\bibitem{Martin2014} Martin, T., Zhang, X., \& Newman, M. E. (2014). Localization and centrality in networks. Physical review E, 90(5), 052808.
doi: 10.1103/PhysRevE.90.052808.
\bibitem{Maslov2002} Maslov, S., \& Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296(5569), 910-913.
doi: 10.1126/science.1065103.
\bibitem{Mavroforakis2015} Mavroforakis, C., Mathioudakis, M., \& Gionis, A. (2015). Absorbing random-walk centrality: Theory and algorithms. In 2015 IEEE International Conference on Data Mining (pp. 901-906). IEEE.
doi: 10.1109/ICDM.2015.103.
\bibitem{MS2018} Meshcheryakova, N. and Shvydun, S. (2018). Power in Network Structures Based on Simulations. In: Studies in Computational Intelligence, vol 689. Springer, Cham.
doi: 10.1007/978-3-319-72150-7\_83.
\bibitem{MS2023} Meshcheryakova, N., \& Shvydun, S. (2023). Perturbation analysis of centrality measures. In Proceedings of the International Conference on Advances in Social Networks Analysis and Mining (pp. 407-414).
\bibitem{MS2024} Meshcheryakova, N., \& Shvydun, S. (2024). A comparative analysis of centrality measures in complex networks. Automation and Remote Control, 85(8), 685-695.
doi: 10.1134/S0005117924700127.
\bibitem{Michalak2013} Michalak, T. P., Aadithya, K. V., Szczepanski, P. L., Ravindran, B., \& Jennings, N. R. (2013). Efficient computation of the Shapley value for game-theoretic network centrality. Journal of Artificial Intelligence Research, 46, 607-650.
doi: 10.5555/2512538.2512553.
\bibitem{Milenković2011} Milenković, T., Memišević, V., Bonato, A., \& Pržulj, N. (2011). Dominating biological networks. PloS one, 6(8), e23016.
doi: 10.1371/journal.pone.0023016.
\bibitem{Milenković2008} Milenković, T., \& Pržulj, N. (2008). Uncovering biological network function via graphlet degree signatures. Cancer informatics, 6, CIN-S680.
doi: 10.4137/CIN.S680.
\bibitem{Min2018} Min, B. (2018). Identifying an influential spreader from a single seed in complex networks via a message-passing approach. The European Physical Journal B, 91(1), 18.
doi: 10.1140/epjb/e2017-80597-1.
\bibitem{Mo2019} Mo, H., \& Deng, Y. (2019). Identifying node importance based on evidence theory in complex networks. Physica A: Statistical Mechanics and its Applications, 529, 121538.
doi: 10.1016/j.physa.2019.121538.
\bibitem{Mones2012} Mones, E., Vicsek, L., \& Vicsek, T. (2012). Hierarchy measure for complex networks. PloS one, 7(3), e33799.
doi: 10.1371/journal.pone.0033799.
\bibitem{Morone2015} Morone, F., \& Makse, H. A. (2015). Influence maximization in complex networks through optimal percolation. Nature, 524(7563), 65-68.
doi: 10.1038/nature14604.
\bibitem{Moxley1974} Moxley, R. L., \& Moxley, N. F. (1974). Determining Point-Centrality in Uncontrived Social Networks. Sociometry, 37(1), 122-130.
doi: 10.2307/2786472.
\bibitem{Mukhtar2023} Mukhtar, M. F., Abal Abas, Z., Baharuddin, A. S., Norizan, M. N., Fakhruddin, W. F. W. W., Minato, W., Rasib, A. H. A, Abidin, Z. Z., Rahman, A. F. N. A. \& Anuar, S. H. H. (2023). Integrating local and global information to identify influential nodes in complex networks. Scientific Reports, 13(1), 11411.
doi: 10.1038/s41598-023-37570-7.
\bibitem{Mussone2022} Mussone, L., Viseh, H., \& Notari, R. (2022). Novel centrality measures and applications to underground networks. Physica A: Statistical Mechanics and its Applications, 589, 126595.
doi: 10.1016/j.physa.2021.126595.
\bibitem{Myerson}
Myerson, R.B., Graphs and Cooperation in Games,
Math. Oper. Res.
, 1977, vol. 2., pp. 225-229.
doi: 10.1287/moor.2.3.225.
\bibitem{Myerson2}
Myerson, R.B., Conference Structures and Fair Allocation Rules,
Int. J. Game Theory
, 1980, vol. 9, pp. 169-182.
doi: 10.1007/BF01781371.
\bibitem{Namtirtha2018a} Namtirtha, A., Dutta, A., \& Dutta, B. (2018). Weighted kshell degree neighborhood method: An approach independent of completeness of global network structure for identifying the influential spreaders. In 2018 10th international conference on communication systems \& networks (COMSNETS) (pp. 81-88). IEEE.
doi: 10.1109/COMSNETS.2018.8328183.
\bibitem{Namtirtha2018} Namtirtha, A., Dutta, A., \& Dutta, B. (2018). Identifying influential spreaders in complex networks based on kshell hybrid method. Physica A: Statistical Mechanics and Its Applications, 499, 310-324.
doi: 10.1016/j.physa.2018.02.016.
\bibitem{Namtirtha2020} Namtirtha, A., Dutta, A., \& Dutta, B. (2020). Weighted kshell degree neighborhood: A new method for identifying the influential spreaders from a variety of complex network connectivity structures. Expert Systems with Applications, 139, 112859.
doi: 10.1016/j.eswa.2019.112859.
\bibitem{Namtirtha2021} Namtirtha, A., Dutta, A., Dutta, B., Sundararajan, A., \& Simmhan, Y. (2021). Best influential spreaders identification using network global structural properties. Scientific reports, 11(1), 2254.
doi: 10.1038/s41598-021-81614-9.
\bibitem{Namtirtha2022} Namtirtha, A., Dutta, B., \& Dutta, A. (2022). Semi-global triangular centrality measure for identifying the influential spreaders from undirected complex networks. Expert Systems with Applications, 206, 117791.
doi: 10.1016/j.eswa.2022.117791.
\bibitem{Nanda2008} Nanda, S., \& Kotz, D. (2008). Localized bridging centrality for distributed network analysis. In 2008 proceedings of 17th international conference on computer communications and networks (pp. 1-6). IEEE.
doi: 10.1109/ICCCN.2008.ECP.31.
\bibitem{Negahban2017} Negahban, S., Oh, S., \& Shah, D. (2017). Rank Centrality: Ranking from Pairwise Comparisons. Operations Research, 65(1), 266-287.
doi: 10.1287/opre.2016.1534.
\bibitem{Newman2005} Newman, M. E. (2005). A measure of betweenness centrality based on random walks. Social networks, 27(1), 39-54.
doi: 10.1016/j.socnet.2004.11.009.
\bibitem{Newman2018} Newman, M. (2018). Networks. Oxford university press.
doi: 10.1093/oso/9780198805090.001.0001.
\bibitem{Ni2020} Ni, C., Yang, J., \& Kong, D. (2020). Sequential seeding strategy for social influence diffusion with improved entropy-based centrality. Physica A: Statistical Mechanics and its Applications, 545, 123659.
doi: 10.1016/j.physa.2019.123659.
\bibitem{Nie2016} Nie, T., Guo, Z., Zhao, K., \& Lu, Z. M. (2016). Using mapping entropy to identify node centrality in complex networks. Physica A: Statistical Mechanics and its Applications, 453, 290-297.
doi: 10.1016/j.physa.2016.02.009.
\bibitem{Nieminen1973} Nieminen, U. J. (1973). On the centrality in a directed graph. Social science research, 2(4), 371-378.
doi: 10.1016/0049-089X(73)90010-0.
\bibitem{Nikolaev2015} Nikolaev, A. G., Razib, R., \& Kucheriya, A. (2015). On efficient use of entropy centrality for social network analysis and community detection. Social Networks, 40, 154-162.
doi: 10.1016/j.socnet.2014.10.002.
\bibitem{Noh2004} Noh, J. D., \& Rieger, H. (2004). Random walks on complex networks. Physical review letters, 92(11), 118701.
doi: 10.1103/PhysRevLett.92.118701.
\bibitem{Oldham2019} Oldham, S., Fulcher, B., Parkes, L., Arnatkevi\v{c}i\={u}t\.{e}, A., Suo, C., \& Fornito, A. (2019). Consistency and differences between centrality measures across distinct classes of networks. PloS one, 14(7), e0220061.
doi: 10.1371/journal.pone.0220061.
\bibitem{Omar2020} Omar, Y. M., \& Plapper, P. (2020). A survey of information entropy metrics for complex networks. Entropy, 22(12), 1417.
doi: 10.3390/e22121417.
\bibitem{Opsahl2010} Opsahl, T., Agneessens, F., \& Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social networks, 32(3), 245-251.
doi: 10.1016/j.socnet.2010.03.006.
\bibitem{OrtizArroyo2008} Ortiz-Arroyo, D., Hussain, D.M.A. (2008). An Information Theory Approach to Identify Sets of Key Players. In: Lecture Notes in Computer Science, vol 5376. Springer, Berlin, Heidelberg.
doi: 10.1007/978-3-540-89900-6\_5.
\bibitem{Oztemiz2024} Öztemiz, F., \& Yakut, S. (2024). An Effective Method for Determining Node Dominance Values: Malatya Centrality Algorithm. In 2024 32nd Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
doi: 10.1109/SIU61531.2024.10601155.
\bibitem{Papadimitriou2009} Papadimitriou, A., Katsaros, D., \& Manolopoulos, Y. (2009). Social network analysis and its applications in wireless sensor and vehicular networks. In International Conference on e-Democracy (pp. 411-420). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-11631-5\_37.
\bibitem{Pei2014} Pei, S., Muchnik, L., Andrade, Jr, J. S., Zheng, Z., \& Makse, H. A. (2014). Searching for superspreaders of information in real-world social media. Scientific reports, 4(1), 5547.
doi: 10.1038/srep05547.
\bibitem{Peng2017} Peng, S., Yang, A., Cao, L., Yu, S.,\& Xie, D. (2017). Social influence modeling using information theory in mobile social networks. Information Sciences, 379, 146-159.
doi: 10.1016/j.ins.2016.08.023.
\bibitem{Perozzi2014} Perozzi, B., Al-Rfou, R., \& Skiena, S. (2014). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701-710).
doi: 10.1145/2623330.2623732.
\bibitem{Piraveenan2013} Piraveenan, M., Prokopenko, M., \& Hossain, L. (2013). Percolation centrality: Quantifying graph-theoretic impact of nodes during percolation in networks. PloS one, 8(1), e53095.
doi: 10.1371/journal.pone.0053095.
\bibitem{Piraveenan2023} Piraveenan, M., \& Saripada, N. B. (2023). Transportation centrality: quantifying the relative importance of nodes in transportation networks based on traffic modelling. IEEE Access, vol. 11, pp. 142214-142234.
doi: 10.1109/ACCESS.2023.3339121.
\bibitem{Potapov2008} Potapov, A. P., Goemann, B., \& Wingender, E. (2008). The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks. BMC bioinformatics, 9(1), 227.
doi: 10.1186/1471-2105-9-227.
\bibitem{Poulin2000} Poulin, R., Boily, M. C., \& Mâsse, B. R. (2000). Dynamical systems to define centrality in social networks. Social networks, 22(3), 187-220.
doi: 10.1016/S0378-8733(00)00020-4.
\bibitem{Power2013} Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., \& Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79(4), 798-813.
doi: 10.1016/j.neuron.2013.07.035.
\bibitem{Pozzi2013} Pozzi, F., Di Matteo, T., \& Aste, T. (2013). Spread of risk across financial markets: better to invest in the peripheries. Scientific reports, 3(1), 1665.
doi: 10.1038/srep01665.
\bibitem{Przulj2004} Pržulj, N., Wigle, D. A., \& Jurisica, I. (2004). Functional topology in a network of protein interactions. Bioinformatics, 20(3), 340-348.
doi: 10.1093/bioinformatics/btg415.
\bibitem{Pu2014} Pu, J., Chen, X., Wei, D., Liu, Q., \& Deng, Y. (2014). Identifying influential nodes based on local dimension. Europhysics Letters, 107(1), 10010.
doi: 10.1209/0295-5075/107/10010.
\bibitem{Qi2012} Qi, X., Fuller, E., Wu, Q., Wu, Y., \& Zhang, C. Q. (2012). Laplacian centrality: A new centrality measure for weighted networks. Information Sciences, 194, 240-253.
doi: 10.1016/j.ins.2011.12.027.
\bibitem{Qi2015} Qi, X., Fuller, E., Luo, R., \& Zhang, C. Q. (2015). A novel centrality method for weighted networks based on the Kirchhoff polynomial. Pattern Recognition Letters, 58, 51-60.
doi: 10.1016/j.patrec.2015.02.007.
\bibitem{Qiao2017} Qiao, T., Shan, W., \& Zhou, C. (2017). How to identify the most powerful node in complex networks? A novel entropy centrality approach. Entropy, 19(11), 614.
doi: 10.3390/e19110614.
\bibitem{Qiao2018} Qiao, T., Shan, W., Yu, G., \& Liu, C. (2018). A novel entropy-based centrality approach for identifying vital nodes in weighted networks. Entropy, 20(4), 261.
doi: 10.3390/e20040261.
\bibitem{Ranjan2013} Ranjan, G., \& Zhang, Z. L. (2013). Geometry of complex networks and topological centrality. Physica A: Statistical Mechanics and its Applications, 392(17), 3833-3845.
doi: 10.1016/j.physa.2013.04.013.
\bibitem{Ren2019} Ren, X. L., Gleinig, N., Helbing, D., \& Antulov-Fantulin, N. (2019). Generalized network dismantling. Proceedings of the national academy of sciences, 116(14), 6554-6559.
doi: 10.1073/pnas.1806108116.
\bibitem{Ren2014} Ren, Z. M., Zeng, A., Chen, D. B., Liao, H., \& Liu, J. G. (2014). Iterative resource allocation for ranking spreaders in complex networks. Europhysics Letters, 106(4), 48005.
doi: 10.1209/0295-5075/106/48005.
\bibitem{Restrepo2006} Restrepo, J. G., Ott, E., \& Hunt, B. R. (2006). Characterizing the dynamical importance of network nodes and links. Physical review letters, 97(9), 094102.
doi: 10.1103/PhysRevLett.97.094102.
\bibitem{Rocco2022} Rocco, C. M., \& Barker, K. (2022). Deriving a minimum set of indicators to assess network component importance. Decision Analytics Journal, 5, 100145.
doi: 10.1016/j.dajour.2022.100145.
\bibitem{Rochat2009} Rochat, Y. (2009). Closeness centrality extended to unconnected graphs: The harmonic centrality index (Tech. Rep.).
\bibitem{Rodriguez2007} Rodríguez, J. A., Estrada, E., \& Gutiérrez, A. (2007). Functional centrality in graphs. Linear and Multilinear Algebra, 55(3), 293-302.
doi: 10.1080/03081080601002221.
\bibitem{Rossi2014} Rossi, L., Torsello, A., \& Hancock, E. R. (2014). Node centrality for continuous-time quantum walks. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) (pp. 103-112). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-662-44415-3\_11.
\bibitem{Rosvall2005} Rosvall, M., Trusina, A., Minnhagen, P., \& Sneppen, K. (2005). Networks and cities: An information perspective. Physical review letters, 94(2), 028701.
doi: 10.1103/PhysRevLett.94.028701.
\bibitem{Rubinov2011} Rubinov, M., \& Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56(4), 2068-2079.
doi: 10.1016/j.neuroimage.2011.03.069.
\bibitem{Rusinowska2011} Rusinowska, A., Berghammer, R., De Swart, H., \& Grabisch, M. (2011). Social networks: prestige, centrality, and influence. In International Conference on Relational and Algebraic Methods in Computer Science (pp. 22-39). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-21070-9\_2.
\bibitem{Vargas2014} Ruiz Vargas, E., \& Wahl, L. M. (2014). The gateway coefficient: a novel metric for identifying critical connections in modular networks. The European Physical Journal B, 87(7), 161.
doi: 10.1140/epjb/e2014-40800-7.
\bibitem{Sabidussi1966} Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581-603.
doi: 10.1007/BF02289527.
\bibitem{Sade1989} Sade, D. S. (1989). Sociometrics of macaca mulatta III: N-path centrality in grooming networks. Social Networks, 11(3), 273-292.
doi: 10.1016/0378-8733(89)90006-3.
\bibitem{Saito2016} Saito, K., Kimura, M., Ohara, K., \& Motoda, H. (2016). Super mediator-A new centrality measure of node importance for information diffusion over social network. Information Sciences, 329, 985-1000.
doi: 10.1016/j.ins.2015.03.034.
\bibitem{Salavati2018} Salavati, C., Abdollahpouri, A., \& Manbari, Z. (2018). BridgeRank: A novel fast centrality measure based on local structure of the network. Physica A: Statistical Mechanics and its Applications, 496, 635-653.
doi: 10.1016/j.physa.2017.12.087.
\bibitem{Saxena2018} Saxena, C., Doja, M. N., \& Ahmad, T. (2018). Group based centrality for immunization of complex networks. Physica A: Statistical Mechanics and Its Applications, 508, 35-47.
doi: 10.1016/j.physa.2018.05.107.
\bibitem{Saxena2020} Saxena, A., \& Iyengar, S. (2020). Centrality measures in complex networks: A survey. arXiv preprint arXiv:2011.07190.
doi: 10.48550/arXiv.2011.07190.
\bibitem{Saxena2020b} Saxena, C., Doja, M. N., \& Ahmad, T. (2020). Entropy based flow transfer for influence dissemination in networks. Physica A: Statistical Mechanics and its Applications, 555, 124630.
doi: 10.1016/j.physa.2020.124630.
\bibitem{Scardoni2009} Scardoni, G., Petterlini, M., \& Laudanna, C. (2009). Analyzing biological network parameters with CentiScaPe. Bioinformatics, 25(21), 2857-2859.
doi: 10.1093/bioinformatics/btp517.
\bibitem{Schoch2024} Schoch D. Periodic Table of Network Centrality. (2024). Available from:
http://schochastics.net/sna/periodic.html
(accessed on 1 October 2025).
\bibitem{Schoch2016}Schoch, D., \& Brandes, U. (2016). Re-conceptualizing centrality in social networks. European Journal of Applied Mathematics, 27(6), 971-985.
doi: 10.1017/S0956792516000401.
\bibitem{Schoch2018}Schoch, D. (2018). Centrality without indices: Partial rankings and rank probabilities in networks. Social Networks, 54, 50-60.
doi: 10.1016/j.socnet.2017.12.003.
\bibitem{Seidman1983} Seidman, S. B. (1983). Network structure and minimum degree. Social networks, 5(3), 269-287.
doi: 10.1016/0378-8733(83)90028-X.
\bibitem{Seidman2015}Segarra, S., \& Ribeiro, A. (2015). Stability and continuity of centrality measures in weighted graphs. IEEE Transactions on Signal Processing, 64(3), 543-555.
doi: 10.1109/ICASSP.2015. 7178599.
\bibitem{Servedio2025} Servedio, V. D., Bellina, A., Calò, E., \& De Marzo, G. (2025). Fitness centrality: a non-linear centrality measure for complex networks. Journal of Physics: Complexity, 6(1), 015002.
doi: 10.1088/2632-072X/ada845.
\bibitem{Shah2010} Shah, D., \& Zaman, T. (2010). Detecting sources of computer viruses in networks: theory and experiment. In Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer systems (pp. 203-214).
doi: 10.1145/1811039.1811063.
\bibitem{Shah2011} Shah, D., \& Zaman, T. (2011). Rumors in a network: Who's the culprit?. IEEE Transactions on information theory, 57(8), 5163-5181.
doi: 10.1109/TIT.2011.2158885.
\bibitem{Shang2021} Shang, Q., Deng, Y., \& Cheong, K. H. (2021). Identifying influential nodes in complex networks: Effective distance gravity model. Information Sciences, 577, 162-179.
doi: 10.1016/j.ins.2021.01.053.
\bibitem{Shao2019} Shao, Z., Liu, S., Zhao, Y., \& Liu, Y. (2019). Identifying influential nodes in complex networks based on Neighbours and edges. Peer-to-Peer Networking and Applications, 12, 1528-1537.
doi: 10.1007/s12083-018-0681-x.
\bibitem{Shapley1953} Shapley, L. S. (1953). A value for n-person games. In Kuhn, H., \& Tucker, A. (Eds.), In Contributions to the Theory of Games, volume II, pp. 307-317. Princeton University Press.
doi: 10.1515/9781400881970-018.
\bibitem{Shaw1954} Shaw, M. E. (1954). Group structure and the behavior of individuals in small groups. The Journal of psychology, 38(1), 139-149.
doi: 10.1080/00223980.1954.9712925.
\bibitem{Sheikhahmadi2015} Sheikhahmadi, A., Nematbakhsh, M. A., \& Shokrollahi, A. (2015). Improving detection of influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 436, 833-845.
doi: 10.1016/j.physa.2015.04.035.
\bibitem{Sheikhahmadi2017} Sheikhahmadi, A., \& Nematbakhsh, M. A. (2017). Identification of multi-spreader users in social networks for viral marketing. Journal of Information Science, 43(3), 412-423.
doi: 10.1177/0165551516644171.
\bibitem{Sheng2020} Sheng, J., Dai, J., Wang, B., Duan, G., Long, J., Zhang, J., Guan, K., Hu, S., Chen, L. \& Guan, W. (2020). Identifying influential nodes in complex networks based on global and local structure. Physica A: Statistical Mechanics and its Applications, 541, 123262.
doi: 10.1016/j.physa.2019.123262.
\bibitem{Shimbel1953} Shimbel, A. (1953). Structural parameters of communication networks. The bulletin of mathematical biophysics, 15(4), 501-507.
doi: 10.1007/BF02476438.
\bibitem{Shvydun2016} Shvydun, S. (2016). Normative properties of multi-criteria choice procedures and their superpositions: I. arXiv preprint arXiv:1611.00524.
doi: 10.48550/arXiv.1611.00524.
\bibitem{Shvydun2020} Shvydun, S. (2020). Power of Nodes Based on Their Interdependence. In Complex Networks XI: Proceedings of the 11th Conference on Complex Networks CompleNet 2020 (pp. 70-82). Cham: Springer International Publishing.
doi: 10.1007/978-3-030-40943-2\_7.
\bibitem{Shvydun2025} Shvydun, S. (2025). Centrality in complex networks under incomplete data. PLOS Complex Systems, 2(5), e0000042.
doi: 10.1371/journal.pcsy.0000042.
\bibitem{Silva2012} Silva, F. N., \& Costa, L. D. F. (2012). Local dimension of complex networks. arXiv preprint arXiv:1209.2476.
doi: 10.48550/arXiv.1209.2476.
\bibitem{Simko2013} Simko, G. I., \& Csermely, P. (2013). Nodes having a major influence to break cooperation define a novel centrality measure: game centrality. PloS one, 8(6), e67159.
doi: 10.1371/journal.pone.0067159.
\bibitem{Sinclair2009} Sinclair, P. A. (2009). Network centralization with the Gil Schmidt power centrality index. Social Networks, 31(3), 214-219.
doi: 10.1016/j.socnet.2009.04.004.
\bibitem{Singh2017} Singh, R., Chakraborty, A., \& Manoj, B. S. (2017). GFT centrality: A new node importance measure for complex networks. Physica A: Statistical Mechanics and its Applications, 487, 185-195.
doi: 10.1016/j.physa.2017.06.018.
\bibitem{Skibski}
Skibski, O., Michalak, T. P., \& Rahwan, T. (2018). Axiomatic characterization of game-theoretic centrality. Journal of Artificial Intelligence Research, 62, 33-68.
doi: 10.1613/jair.1.11202.
\bibitem{Skibski2}
Skibski, O., \& Sosnowska, J. (2018). Axioms for distance-based centralities. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). pp. 1218-1225.
doi: 10.1609/aaai.v32i1.11441.
\bibitem{Skibski3} Skibski, O. (2018) Axioms4Centralities. Available from:
http://centrality.mimuw.edu.pl/
(accessed on 1 May 2025).
\bibitem{Seeley1949} Seeley, J. R. (1949). The net of reciprocal influence; a problem in treating sociometric data. Canadian Journal of Psychology / Revue canadienne de psychologie, 3(4), 234-240.
doi: 10.1037/h0084096.
\bibitem{Song2015} Song, B., Jiang, G. P., Song, Y. R., \& Xia, L. L. (2015). Rapid identifying high-influence nodes in complex networks. Chinese Physics B, 24(10), 100101.
doi: 10.1088/1674-1056/24/10/100101.
\bibitem{Stella2018} Stella, M., \& De Domenico, M. (2018). Distance entropy cartography characterises centrality in complex networks. Entropy, 20(4), 268.
doi: 10.3390/e20040268.
\bibitem{Stelzl2005} Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke M., Zenkner M., Schoenherr A., Koeppen S., Timm J., Mintzlaff S., Abraham C., Bock N., Kietzmann S., Goedde A., Toksöz E., Droege A., Krobitsch S., Korn B., Birchmeier W., Lehrach H. \& Wanker, E. E. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell, 122(6), 957-968.
doi: 10.1016/j.cell.2005.08.029.
\bibitem{Stephenson1989} Stephenson, K., \& Zelen, M. (1989). Rethinking centrality: Methods and examples. Social networks, 11(1), 1-37.
doi: 10.1016/0378-8733(89)90016-6.
\bibitem{Sun2019} Sun, H. L., Chen, D. B., He, J. L., \& Ch’ng, E. (2019). A voting approach to uncover multiple influential spreaders on weighted networks. Physica A: Statistical Mechanics and its Applications, 519, 303-312.
doi: 10.1016/j.physa.2018.12.001.
\bibitem{Sun2017} Sun, Z., Wang, B., Sheng, J., Hu, Y., Wang, Y., \& Shao, J. (2017). Identifying influential nodes in complex networks based on weighted formal concept analysis. IEEE access, 5, 3777-3789.
doi: 10.1109/ACCESS.2017.2679038.
\bibitem{Tagarelli2013} Tagarelli, A., \& Interdonato, R. (2013). "Who's out there?" identifying and ranking lurkers in social networks. In Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 215-222).
doi: 10.1145/2492517.2492542.
\bibitem{Takes2011} Takes, F. W., \& Kosters, W. A. (2011). Identifying prominent actors in online social networks using biased random walks. In Proceedings of the 23rd benelux conference on artificial intelligence (BNAIC) (pp. 215-222).
\bibitem{Tan2006} Tan, Y. J., Wu, J., \& Deng, H. Z. (2006). Evaluation method for node importance based on node contraction in complex networks. Systems Engineering-Theory \& Practice, 11(11), 79-83.
\bibitem{Torres2021} Torres, L., Chan, K. S., Tong, H., \& Eliassi-Rad, T. (2021). Nonbacktracking eigenvalues under node removal: X-centrality and targeted immunization. SIAM Journal on Mathematics of Data Science, 3(2), 656-675.
doi: 10.1137/20M1352132.
\bibitem{Travençolo2008} Travençolo, B. A. N., \& Costa, L. D. F. (2008). Accessibility in complex networks. Physics Letters A, 373(1), 89-95.
doi: 10.1016/j.physleta.2008.10.069.
\bibitem{Tseng2024} Tseng, C. C., \& Lee, S. L. (2024). Fractional graph Fourier transform centrality and its application to social network. In 2024 IEEE 4th International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB) (pp. 105-109). IEEE.
doi: 10.1109/ICEIB61477.2024.10602678.
\bibitem{Tulu2018} Tulu, M. M., Hou, R., \& Younas, T. (2018). Identifying influential nodes based on community structure to speed up the dissemination of information in complex network. IEEE access, 6, 7390-7401.
doi: 10.1109/ACCESS.2018.2794324.
\bibitem{Tutzauer2007} Tutzauer, F. (2007). Entropy as a measure of centrality in networks characterized by path-transfer flow. Social networks, 29(2), 249-265.
doi: 10.1016/j.socnet.2006.10.001.
\bibitem{Ugurlu2022} Ugurlu, O. (2022). Comparative analysis of centrality measures for identifying critical nodes in complex networks. Journal of Computational Science, 62, 101738.
doi: 10.1016/j.jocs.2022.101738.
\bibitem{Ullah2021} Ullah, A., Wang, B., Sheng, J., Long, J., Khan, N., \& Sun, Z. (2021). Identification of nodes influence based on global structure model in complex networks. Scientific Reports, 11(1), 6173.
doi: 10.1038/s41598-021-84684-x.
\bibitem{Ullah2021b} Ullah, A., Wang, B., Sheng, J., Long, J., Khan, N., \& Sun, Z. (2021). Identifying vital nodes from local and global perspectives in complex networks. Expert Systems with Applications, 186, 115778.
doi: 10.1016/j.eswa.2021.115778.
\bibitem{Valente1998} Valente, T. W., \& Foreman, R. K. (1998). Integration and radiality: Measuring the extent of an individual's connectedness and reachability in a network. Social networks, 20(1), 89-105.
doi: 10.1016/S0378-8733(97)00007-5.
\bibitem{vdBrink1994} van den Brink, R., \& Gilles, R. P. (1994). A social power index for hierarchically structured populations of economic agents. In Imperfections and Behavior in Economic Organizations (pp. 279-318). Dordrecht: Springer Netherlands.
doi: 10.1007/978-94-011-1370-0\_12.
\bibitem{VanDenBrink2008} Van Den Brink, R., Borm, P., Hendrickx, R., \& Owen, G. (2008). Characterizations of the \(β\)-and the degree network power measure. Theory and Decision, 64(4), 519-536.
doi: 10.1007/s11238-007-9077-8.
\bibitem{PVM2014} Van Mieghem P.
Performance Analysis of Complex Networks and Systems
. Cambridge University Press; 2014.
doi: 10.1017/CBO9781107415874.
\bibitem{PVM2017} Van Mieghem, P., Devriendt, K., \& Cetinay, H. (2017). Pseudoinverse of the Laplacian and best spreader node in a network. Physical Review E, 96(3), 032311.
doi: 10.1103/PhysRevE.96.032311.
\bibitem{Viswanath2009} Viswanath M. Ontology-based automatic text summarization (Doctoral dissertation, uga). 2009.
\bibitem{Wan2021} Wan, Z., Mahajan, Y., Kang, B. W., Moore, T. J., \& Cho, J. H. (2021). A survey on centrality metrics and their network resilience analysis. IEEE Access, 9, 104773-104819.
doi: 10.1109/ACCESS.2021.3094196.
\bibitem{Wandelt2018}Wandelt, S., Sun, X., Feng, D., Zanin, M., \& Havlin, S. (2018). A comparative analysis of approaches to network-dismantling. Scientific reports, 8(1), 13513.
doi: 10.1038/s41598-018-31902-8.
\bibitem{Wang2023}Wang, G., Parthasarathy, R., \& Li, Y. (2023). Key node identification voting method based on multi-attributes in social complex networks. In Proceedings of the 2023 3rd Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence and Big Data Forum (pp. 394-399).
doi: 10.1145/3660395.3660462.
\bibitem{GWang2008} Wang, G., Shen, Y., \& Luan, E. (2008). A measure of centrality based on modularity matrix. Progress in Natural Science, 18(8), 1043-1047.
doi: 10.1016/j.pnsc.2008.03.015.
\bibitem{Wang2010} Wang, H., Li, M., Wang, J., \& Pan, Y. (2011). A new method for identifying essential proteins based on edge clustering coefficient. In International Symposium on Bioinformatics Research and Applications (pp. 87-98). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-21260-4\_12.
\bibitem{HWang2015} Wang, H., Zhang, Y., Zhang, Z., Mahadevan, S., \& Deng, Y. (2015). Physarum Spreader: A New Bio-Inspired Methodology for Identifying Influential Spreaders in Complex Networks. PloS one, 10(12), e0145028.
doi: 10.1371/journal.pone.0145028.
\bibitem{Wang2017} Wang, J., Hou, X., Li, K., \& Ding, Y. (2017). A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks. Physica A: Statistical Mechanics and its Applications, 475, 88-105.
doi: 10.1016/j.physa.2017.02.007.
\bibitem{Wang2018} Wang, J., Li, C., \& Xia, C. (2018). Improved centrality indicators to characterize the nodal spreading capability in complex networks. Applied Mathematics and Computation, 334, 388-400.
doi: 10.1016/j.amc.2018.04.028.
\bibitem{Wang2012} Wang, J., Li, M., Wang, H., \& Pan, Y. (2011). Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1070-1080.
doi: 10.1109/TCBB.2011.147.
\bibitem{Wang2020} Wang, M., Li, W., Guo, Y., Peng, X., \& Li, Y. (2020). Identifying influential spreaders in complex networks based on improved k-shell method. Physica A: Statistical Mechanics and Its Applications, 124229.
doi: 10.1016/j.physa.2020.124229.
\bibitem{QWang2018} Wang, Q., Ren, J., Wang, Y., Zhang, B., Cheng, Y., \& Zhao, X. (2018). CDA: A clustering degree based influential spreader identification algorithm in weighted complex network. IEEE Access, 6, 19550-19559.
doi: 10.1109/ACCESS.2018.2822844.
\bibitem{SWang2017} Wang, S., Du, Y., \& Deng, Y. (2017). A new measure of identifying influential nodes: Efficiency centrality. Communications in Nonlinear Science and Numerical Simulation, 47, 151-163.
doi: 10.1016/j.cnsns.2016.11.008.
\bibitem{XWang2016} Wang, X., Su, Y., Zhao, C., \& Yi, D. (2016). Effective identification of multiple influential spreaders by DegreePunishment. Physica A: Statistical Mechanics and its Applications, 461, 238-247.
doi: 10.1016/j.physa.2016.05.020.
\bibitem{Wang2008} Wang, X., Tao, T., Sun, J. T., Shakery, A., \& Zhai, C. (2008). Dirichletrank: Solving the zero-one gap problem of pagerank. ACM Transactions on Information Systems (TOIS), 26(2), 1-29.
doi: 10.1145/1344411.1344416.
\bibitem{Wang2021} Wang, X., Yang, Q., Liu, M., \& Ma, X. (2021). Comprehensive influence of topological location and neighbor information on identifying influential nodes in complex networks. Plos one, 16(5), e0251208.
doi: 10.1371/journal.pone.0251208.
\bibitem{Wang2019} Wang, Y., Chen, B., Li, W., \& Zhang, D. (2019). Influential Node Identification in Command and Control Networks Based on Integral k‐Shell. Wireless Communications and Mobile Computing, 2019(1), 6528431.
doi: 10.1155/2019/6528431.
\bibitem{ZWang2017} Wang, Z., Du, C., Fan, J., \& Xing, Y. (2017). Ranking influential nodes in social networks based on node position and neighborhood. Neurocomputing, 260, 466-477.
doi: 10.1016/j.neucom.2017.04.064.
\bibitem{Wang2015} Wang, Z., Duenas-Osorio, L., \& Padgett, J. E. (2015). A new mutually reinforcing network node and link ranking algorithm. Scientific reports, 5(1), 15141.
doi: 10.1038/srep15141.
\bibitem{Wang2024} Wang, Z., Huang, R., Yang, D., Peng, Y., Zhou, B., \& Chen, Z. (2024). Identifying influential nodes based on the disassortativity and community structure of complex network. Scientific Reports, 14(1), 8453.
doi: 10.1038/s41598-024-59071-x.
\bibitem{Wang2016} Wang, Z., Zhao, Y., Xi, J., \& Du, C. (2016). Fast ranking influential nodes in complex networks using a k-shell iteration factor. Physica A: Statistical Mechanics and its Applications, 461, 171-181.
doi: 10.1016/j.physa.2016.05.048.
\bibitem{Wąs2019} W\k{a}s, T., Rahwan, T., \& Skibski, O. (2019). Random walk decay centrality. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 2197-2204).
doi: 10.1609/aaai.v33i01.33012197.
\bibitem{WassermanFaust1994} Wasserman, S., \& Faust, K. (1994). Social network analysis: Methods and applications.
doi: 10.1017/CBO9780511815478.
\bibitem{Wiener1947} Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69, 17-20.
doi: 10.1021/ja01193a005.
\bibitem{Wehmuth2012} Wehmuth, K., \& Ziviani, A. (2012). Distributed assessment of the closeness centrality ranking in complex networks. In Proceedings of the Fourth Annual Workshop on Simplifying Complex Networks for Practitioners (pp. 43-48).
doi: 10.1145/2184356.2184368.
\bibitem{Wei2015} Wei, B., Liu, J., Wei, D., Gao, C., \& Deng, Y. (2015). Weighted k-shell decomposition for complex networks based on potential edge weights. Physica A: Statistical Mechanics and its Applications, 420, 277-283.
doi: 10.1016/j.physa.2014.11.012.
\bibitem{Wei2013} Wei, D., Deng, X., Zhang, X., Deng, Y., \& Mahadevan, S. (2013). Identifying influential nodes in weighted networks based on evidence theory. Physica A: Statistical Mechanics and its Applications, 392(10), 2564-2575.
doi: 10.1016/j.physa.2013.01.054.
\bibitem{Wei1952} Wei, T. H. (1952). The Algebraic Foundations of Ranking Theory. PhD thesis, University of Cambridge.
\bibitem{Wen2019} Wen, T., \& Jiang, W. (2019). Identifying influential nodes based on fuzzy local dimension in complex networks. Chaos, Solitons \& Fractals, 119, 332-342.
doi: 10.1016/j.chaos.2019.01.011.
\bibitem{Wen2020} Wen, T., \& Deng, Y. (2020). Identification of influencers in complex networks by local information dimensionality. Information Sciences, 512, 549-562.
doi: 10.1016/j.ins.2019.10.003.
\bibitem{Wen2020b} Wen, T., Pelusi, D., \& Deng, Y. (2020). Vital spreaders identification in complex networks with multi-local dimension. Knowledge-Based Systems, 195, 105717.
doi: 10.1016/j.knosys.2020.105717.
\bibitem{Wenli2013} Wenli, F., Zhigang, L., \& Ping, H. (2013). Identifying node importance based on information entropy in complex networks. Physica Scripta, 88(6), 065201.
doi: 10.1088/0031-8949/88/06/065201.
\bibitem{White2003} White, S., \& Smyth, P. (2003). Algorithms for estimating relative importance in networks. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 266-275.
doi: 10.1145/956750.956782.
\bibitem{Williams2004} Williams, R. J., \& Martinez, N. D. (2004). Limits to trophic levels and omnivory in complex food webs: theory and data. The American Naturalist, 163(3), 458-468.
doi: 10.1086/381964.
\bibitem{Wu2015} Wu, Z., Menichetti, G., Rahmede, C., \& Bianconi, G. (2015). Emergent complex network geometry. Scientific reports, 5(1), 10073.
doi: 10.1038/srep10073.
\bibitem{Xu2019}Xu, S., Wang, P., Zhang, C. X., \& Lü, J. J. (2018). Spectral learning algorithm reveals propagation capability of complex networks. IEEE transactions on cybernetics, 49(12), 4253-4261.
doi: 10.1109/TCYB.2018.2861568.
\bibitem{Xu2017} Xu, S., \& Wang, P. (2017). Identifying important nodes by adaptive LeaderRank. Physica A: Statistical Mechanics and its Applications, 469, 654-664.
doi: 10.1016/j.physa.2016.11.034.
\bibitem{Yan2020} Yan, X. L., Cui, Y. P., \& Ni, S. J. (2020). Identifying influential spreaders in complex networks based on entropy weight method and gravity law. Chinese physics B, 29(4), 048902.
doi: 10.1088/1674-1056/ab77fe.
\bibitem{Yan2013} Yan, X., Zhai, L., \& Fan, W. (2013). C-index: A weighted network node centrality measure for collaboration competence. Journal of Informetrics, 7(1), 223-239.
doi: 10.1016/j.joi.2012.11.004.
\bibitem{Yanez-Sierra2021} Yanez-Sierra, J., Diaz-Perez, A., \& Sosa-Sosa, V. (2021). An efficient partition-based approach to identify and scatter multiple relevant spreaders in complex networks. Entropy, 23(9), 1216.
doi: 10.3390/e23091216.
\bibitem{Yang2018} Yang, F., Li, X., Xu, Y., Liu, X., Wang, J., Zhang, Y., Zhang, R. \& Yao, Y. (2018). Ranking the spreading influence of nodes in complex networks: An extended weighted degree centrality based on a remaining minimum degree decomposition. Physics Letters A, 382(34), 2361-2371.
doi: 10.1016/j.physleta.2018.05.032.
\bibitem{Yang2020} Yang, H., \& An, S. (2020). Critical nodes identification in complex networks. Symmetry, 12(1), 123.
doi: 10.3390/sym12010123.
\bibitem{Yang2023} Yang, P., Meng, F., Zhao, L., \& Zhou, L. (2023). AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks. Chaos, Solitons \& Fractals, 166, 112974.
doi: 10.1016/j.chaos.2022.112974.
\bibitem{Yang2021} Yang, X., \& Xiao, F. (2021). An improved gravity model to identify influential nodes in complex networks based on k-shell method. Knowledge-Based Systems, 227, 107198.
doi: 10.1016/j.knosys.2021.107198.
\bibitem{YangX2021} Yang, X. H., Xiong, Z., Ma, F., Chen, X., Ruan, Z., Jiang, P., \& Xu, X. (2021). Identifying influential spreaders in complex networks based on network embedding and node local centrality. Physica A: Statistical Mechanics and its Applications, 573, 125971.
doi: 10.1016/j.physa.2021.125971.
\bibitem{YangWang2020} Yang, Y., Wang, X., Chen, Y., Hu, M., \& Ruan, C. (2020). A novel centrality of influential nodes identification in complex networks. IEEE access, 8, 58742-58751.
doi: 10.1109/ACCESS.2020.2983053.
\bibitem{YangY2020} Yang, Y. Z., Hu, M., \& Huang, T. Y. (2020). Influential nodes identification in complex networks based on global and local information. Chinese Physics B, 29(8), 088903.
doi: 10.1088/1674-1056/ab969f.
\bibitem{Yu2018} Yu, H., Chen, L., Cao, X., Liu, Z., \& Li, Y. (2018). Identifying top-k important nodes based on probabilistic-jumping random walk in complex networks. In Complex Networks \& Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their Applications) (pp. 326-338). Springer International Publishing.
doi: 10.1007/978-3-319-72150-7\_27.
\bibitem{Yu2019} Yu, Z., Shao, J., Yang, Q., \& Sun, Z. (2019). Profitleader: Identifying leaders in networks with profit capacity. World Wide Web, 22(2), 533-553.
doi: 10.1007/s11280-018-0537-6.
\bibitem{Zachary1977} Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4), 452-473.
doi: 10.1086/jar.33.4.3629752.
\bibitem{Zareie2017} Zareie, A., Sheikhahmadi, A., \& Fatemi, A. (2017). Influential nodes ranking in complex networks: An entropy-based approach. Chaos, Solitons \& Fractals, 104, 485-494.
doi: 10.1016/j.chaos.2017.09.010.
\bibitem{Zareie2018} Zareie, A., \& Sheikhahmadi, A. (2018). A hierarchical approach for influential node ranking in complex social networks. Expert Systems with Applications, 93, 200-211.
doi: 10.1016/j.eswa.2017.10.018.
\bibitem{Zareie2018b}Zareie, A., Sheikhahmadi, A., \& Khamforoosh, K. (2018). Influence maximization in social networks based on TOPSIS. Expert Systems with Applications, 108, 96-107.
doi: 10.1016/j.eswa.2018.05.001.
\bibitem{Zareie2019b} Zareie, A., \& Sheikhahmadi, A. (2019). EHC: Extended H-index centrality measure for identification of users’ spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications, 514, 141-155.
doi: 10.1016/j.physa.2018.09.064.
\bibitem{Zareie2019} Zareie, A., Sheikhahmadi, A., \& Jalili, M. (2019). Influential node ranking in social networks based on neighborhood diversity. Future Generation Computer Systems, 94, 120-129.
doi: 10.1016/j.future.2018.11.023.
\bibitem{Zareie2020} Zareie, A., Sheikhahmadi, A., Jalili, M., \& Fasaei, M. S. K. (2020). Finding influential nodes in social networks based on neighborhood correlation coefficient. Knowledge-based systems, 194, 105580.
doi: 10.1016/j.knosys.2020.105580.
\bibitem{Zdeborová2016} Zdeborová, L., Zhang, P., \& Zhou, H. J. (2016). Fast and simple decycling and dismantling of networks. Scientific reports, 6(1), 37954.
doi: 10.1038/srep37954.
\bibitem{Zeng2013} Zeng, A., \& Zhang, C. J. (2013). Ranking spreaders by decomposing complex networks. Physics letters A, 377(14), 1031-1035.
doi: 10.1016/j.physleta.2013.02.039.
\bibitem{Zhai2013} Zhai, L., Yan, X., \& Zhang, G. (2013). A centrality measure for communication ability in weighted network. Physica A: Statistical Mechanics and its Applications, 392(23), 6107-6117.
doi: 10.1016/j.physa.2013.07.056.
\bibitem{Zhang2021} Zhang, H., Zhong, S., Deng, Y., \& Cheong, K. H. (2021). LFIC: Identifying influential nodes in complex networks by local fuzzy information centrality. IEEE Transactions on Fuzzy Systems, 30(8), 3284-3296.
doi: 10.1109/TFUZZ.2021.3112226.
\bibitem{Zhang2016} Zhang, J. X., Chen, D. B., Dong, Q., \& Zhao, Z. D. (2016). Identifying a set of influential spreaders in complex networks. Scientific reports, 6(1), 27823.
doi: 10.1038/srep27823.
\bibitem{Zhang2019} Zhang, J., Wang, B., Sheng, J., Dai, J., Hu, J., \& Chen, L. (2019). Identifying influential nodes in complex networks based on local effective distance. Information, 10(10), 311.
doi: 10.3390/info10100311.
\bibitem{Zhang2022} Zhang, J., Zhang, Q., Wu, L., \& Zhang, J. (2022). Identifying influential nodes in complex networks based on multiple local attributes and information entropy. Entropy, 24(2), 293.
doi: 10.3390/e24020293.
\bibitem{Zhang2018} Zhang, Q., Li, M., \& Deng, Y. (2018). Measure the structure similarity of nodes in complex networks based on relative entropy. Physica A: Statistical Mechanics and its Applications, 491, 749-763.
doi: 10.1016/j.physa.2017.09.042.
\bibitem{Zhang2014} Zhang, Q., Li, M., Du, Y., \& Deng, Y. (2014). Local structure entropy of complex networks. arXiv preprint arXiv:1412.3910.
doi: 10.48550/arXiv.1412.3910.
\bibitem{ZhangQ2022} Zhang, Q., Shuai, B., \& Lü, M. (2022). A novel method to identify influential nodes in complex networks based on gravity centrality. Information Sciences, 618, 98-117.
doi: 10.1016/j.ins.2022.10.070.
\bibitem{Zhang2020} Zhang, Y., Shao, C., He, S., \& Gao, J. (2020). Resilience centrality in complex networks. Physical Review E, 101(2), 022304.
doi: 10.1103/PhysRevE.101.022304.
\bibitem{Zhang2012} Zhang, Y., Zhang, Z., Wei, D., \& Deng, Y. (2012). Centrality measure in weighted networks based on an amoeboid algorithm. Journal of Information and Computational Science, 9(2), 369-376.
\bibitem{Zhao2021} Zhao, J., Song, Y., Liu, F., \& Deng, Y. (2021). The identification of influential nodes based on structure similarity. Connection science, 33(2), 201-218.
doi: 10.1080/09540091.2020.1806203.
\bibitem{Zhao2020} Zhao, J., Wang, Y., \& Deng, Y. (2020). Identifying influential nodes in complex networks from global perspective. Chaos, Solitons \& Fractals, 133, 109637.
doi: 10.1016/j.chaos.2020.109637.
\bibitem{Zhao2022} Zhao, J., Wen, T., Jahanshahi, H., \& Cheong, K. H. (2022). The random walk-based gravity model to identify influential nodes in complex networks. Information Sciences, 609, 1706-1720.
doi: 10.1016/j.ins.2022.07.084.
\bibitem{Zhao2023} Zhao, S., \& Sun, S. (2023). Identification of node centrality based on Laplacian energy of networks. Physica A: Statistical Mechanics and its Applications, 609, 128353.
doi: 10.1016/j.physa.2022.128353.
\bibitem{ZhaoX2015} Zhao, X. Y., Huang, B., Tang, M., Zhang, H. F., \& Chen, D. B. (2015). Identifying effective multiple spreaders by coloring complex networks. Europhysics Letters, 108(6), 68005.
doi: 10.1209/0295-5075/108/68005.
\bibitem{Zhao2018} Zhao, X., Liu, F. A., Xing, S., \& Wang, Q. (2018). Identifying influential spreaders in social networks via normalized local structure attributes. IEEE Access, 6, 66095-66104.
doi: 10.1109/ACCESS.2018.2879116.
\bibitem{Zhao2009} Zhao, Y., Wang, Z., Zheng, J., \& Guo, X. (2009). Finding most vital node by node importance contribution matrix in communication netwoks. Journal of Beijing University of Aeronautics and Astronautics, 35(9), 1076.
\bibitem{Zhao2015} Zhao, Z., Wang, X., Zhang, W., \& Zhu, Z. (2015). A community-based approach to identifying influential spreaders. Entropy, 17(4), 2228-2252.
doi: 10.3390/e17042228.
\bibitem{Zhong2015} Zhong, L. F., Liu, J. G., \& Shang, M. S. (2015). Iterative resource allocation based on propagation feature of node for identifying the influential nodes. Physics Letters A, 379(38), 2272-2276.
doi: 10.1016/j.physleta.2015.05.021.
\bibitem{Zhong2022} Zhong, S., Zhang, H., \& Deng, Y. (2022). Identification of influential nodes in complex networks: A local degree dimension approach. Information Sciences, 610, 994-1009.
doi: 10.1016/j.ins.2022.07.172.
\bibitem{Zhou2018} Zhou, X., Liang, X., Zhao, J., \& Zhang, S. (2018). Cycle based network centrality. Scientific Reports, 8(1), 11749.
doi: 10.1038/s41598-018-30249-4.
\bibitem{Zhou2012} Zhou, X., Zhang, F. M., Li, K. W., Hui, X. B., \& Wu, H. S. (2012). Finding vital node by node importance evaluation matrix in complex networks. Acta Phys. Sin., 61(5): 050201.
doi: 10.7498/aps.61.050201.
\bibitem{JZhou2018} Zhou, J., Yu, X., \& Lu, J. A. (2018). Node importance in controlled complex networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(3), 437-441.
doi: 10.1109/TCSII.2018.2845940.
\bibitem{Zhu2017} Zhu, C., Wang, X., \& Zhu, L. (2017). A novel method of evaluating key nodes in complex networks. Chaos, Solitons \& Fractals, 96, 43-50.
doi: 10.1016/j.chaos.2017.01.007.
\bibitem{Zhu2021} Zhu, J., \& Wang, L. (2021). Identifying influential nodes in complex networks based on node itself and neighbor layer information. Symmetry, 13(9), 1570.
doi: 10.3390/sym13091570.
\bibitem{Zhu2022} Zhu, J. C., \& Wang, L. W. (2022). An extended improved global structure model for influential node identification in complex networks. Chinese Physics B, 31(6), 068904.
doi: 10.1088/1674-1056/ac380d.
\bibitem{Zhuge2010} Zhuge, H., \& Zhang, J. (2010). Topological centrality and its e‐Science applications. Journal of the American Society for Information Science and Technology, 61(9), 1824-1841.
doi: 10.1002/asi.21353.
\end{thebibliography}
\clearpage
\phantomsection
\addcontentsline{toc}{endsection2}{Index}
\footnotesize
\printindex